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Abstract

A major problem of sports analytics is to rank players based
on the impact of their actions. Recent player ranking meth-
ods have applied reinforcement learning (RL) to assess the
value of action from a learned action-value or Q-function.
This paper combines Q-function learning with inverse rein-
forcement learning (IRL) to provide a novel RL-based player
ranking method that is especially effective for low-scoring
games such as soccer and ice hockey. We propose to treat
professional play as expert demonstrations for learning an im-
plicit reward function. Domain knowledge about the rules of
the game is represented by regularizing learned rewards with
goal rewards. Learning is based on 4.5M play-by-play events
in the National Hockey League (NHL). Empirical Evalua-
tion indicates that player ranking based on learned rewards
achieves high correlations with standard success measures
and temporal consistency throughout a season.

Introduction: Valuing Actions and Players
A major task of sports statistics is player evaluation, which
supports drafting, coaching, and trading decisions. The most
common approach is to quantify the impact values for
players’ actions (Schuckers and Curro 2013; Routley and
Schulte 2015; Schulte et al. 2017; Liu and Schulte 2018;
Decroos et al. 2019). Whereas actions with immediate im-
pact on goals, such as shots, are relatively easy to value,
valuing actions with medium-term effects is challenging.
Several RL models have been proposed to tackle this is-
sue (Routley and Schulte 2015; Schulte et al. 2017; Liu and
Schulte 2018). These RL models explicitly use goals as the
reward signals. However, for sports with sparse goals, it is
still the case that goals and actions closely connected to
goals are assigned the largest impact values. Therefore, the
performance evaluation is biased towards offensive players.

To tackle the sparse reward issue, we propose an in-
verse reinforcement learning method with domain knowl-
edge (IRL-DK) to recover reward function for game dy-
namics. In IRL (Ng, Russell, and others 2000), agents are
assumed to act by optimizing an unobserved internal re-
ward function. The learning task is to estimate the agent’s
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reward function from their observed behavior (demonstra-
tions). Sports are different from the general IRL setting, be-
cause some aspects of a player’s reward function can be in-
ferred from domain knowledge. For instance, scoring a goal
should have a relatively high reward because it helps the
team to win a game. To benefit from both IRL and domain
knowledge, we adopt transfer learning methods to combine
the reward inferred from demonstrations and the one in-
ferred from our domain knowledge. The final aggregated re-
ward is used to calculate a Q-function, which measures the
expected total reward from an action given a match state. As
in previous RL work, the Q-function can be used to value
actions and rank players. We apply IRL-DK to the 2018-
19 play-by-play data in NHL. The resulting distribution of
top players is mixed among offensive and defensive players
rather than concentrated among offensive players. Empirical
comparison among 7 player evaluation metrics shows the
high correlations with standard success measures and tem-
poral consistency of our method.

Markov Game Model
As an extension of game theory (Von Neumann and Morgen-
stern 1947) to Markov decision process (MDP), a Markov
Game (Littman 1994) is defined by a set of states and a col-
lection of action sets, one for each agent in the environment.
Our Markov game model for ice hockey follows previous
work (Routley and Schulte 2015). We treat home team H
and away team A as two players in the game. At each times-
tamp, only one player performs an action, and the player not
controlling the puck chooses no operation. Each ice hockey
game is modeled as a semi-episodic task (Sutton and Barto
1998), where games switch from episode to episode. Each
episode starts at the beginning of the game or right after
a goal, and ends up with a goal or the end of the game.
The transition function is calculated using the observed
frequency T (s, a, s′) = p(s′|s, a) = O(s, a, s′)/O(s, a),
where O(·) counts the occurrence number in our dataset.

Similar to previous Markov models for ice hockey
(Thomas et al. 2013; Routley and Schulte 2015; Schulte et
al. 2017), we choose defining features for states, including
game context, team identity (H/A) and location (L). Game
context consists of Goal Difference (GD), ManPower (MP),



and Period (P). GD is calculated as number of home goals
minus number of away goals. MP specifies shorthanded,
even strength, and powerplay. P represents the current pe-
riod, ranging from 1 to 3. (We do not consider overtime
play.) We divide hockey rink into 6 regions indexed by L
based on the two blue lines to divide the X axis. We add
an absorbing goal state for each team, with no transition out
of it. There are total 27 actions recorded in our dataset, and
home and away teams share the same action space.

IRL with Domain Knowledge
We first describe the MaxEnt IRL method before adding do-
main knowledge to it.

Maximum Entropy IRL
In the maximum entropy (MaxEnt) IRL (Ziebart et al. 2008),
each state s is assigned a feature vector fs ∈ Rk and the
reward function is parameterized as a linear function with
reward weights θ ∈ Rk as rs = θTfs. The reward value for
a trajectory ζi is simply the cumulative reward of state,

rζi =
∑
sj∈ζi

θTfsj = θ
Tf ζi ,

where f ζi =
∑
sj∈ζi fsj is called the feature count of the

trajectory. The observed feature counts are calculated as f̃ =
1
n

∑
i f ζi where n is the number of trajectories.

Assume that agents act under a maximum entropy (Jaynes
1957) policy, the probability of a demonstrated trajectory ζi
increases exponentially with higher rewards, so we have

P (ζi|θ, T ) =
erζi

Z(θ, T )

∏
st+1,at,st∈ζi

PT (st+1|at, st) (1)

where Z(θ) is the partition function and T is the state tran-
sition distribution. Fixing T , the optimal θ∗ maximizes the
log-likelihood L(θ) of the demonstrations

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
ζ

logP (ζ|θ, T ). (2)

The maximum is obtained using gradient ascent; the gradi-
ent of log-likelihood is the difference between observed and
expected feature counts, which can be expressed in terms of
state visitation frequencies Ds. The frequency of visiting a
state given a policy can be computed with an iterative algo-
rithm

∇L(θ) = f̃ −
∑
ζ

P (ζ|θ, T )f ζ = f̃ −
∑
si

Dsifsi . (3)

Domain Knowledge with MMD
Directly using IRL algorithm to recover reward function
from game dynamics models what situations professional
players want to be in, that is, their internal reward function.
But the MaxEnt approach fails to learn the importance of
goals in a game, mainly because goals are such rare events
in ice hockey. Previous RL methods define the reward func-
tion explicitly in terms of goals. The rule reward function

assigns reward 1 for scoring a goal (i.e., getting the puck into
the net) and 0 for other actions.

Motivated by knowledge transfer between reward func-
tions (Mendez, Shivkumar, and Eaton 2018), we propose a
new solution concept that allows us to combine IRL with
domain knowledge during training. Here we introduce the
maximum mean discrepancy (MMD) (Gretton et al. 2012)
to transfer knowledge between these two reward functions
and bridge their disparity.

Denote by X a random variable with distribution p. De-
note by Y a random variable with distribution q. Formally,
MMD defines the following difference measure

dH(X,Y ) = sup
f∈H

(EX [f(X)]− EY [f(Y )]), (4)

where H is a class of functions, known as a reproducing
kernel Hilbert space (RKHS). An unbiased estimation of
squared MMD is given by (Long et al. 2017):

d2Hk(X,Y ) =
1

n2x

nx∑
i=1

nx∑
j=1

k(xi, xj) +
1

n2y

ny∑
i=1

ny∑
j=1

k(yi, yj)

− 2

nxny

nx∑
i=1

ny∑
j=1

k(xi, yj). (5)

Combining MaxEnt IRL with MMD, the learning process
is expressed as follows. At each training step, our model
aims to maximize the log-likelihood of demonstrations as
well as to minimize the MMD between two reward func-
tions. The optimal θ∗ is then derived by

θ∗ = argmax
θ

L(θ)− λd2Hk(R, R̂)

= argmax
θ

L(θ) + 2λk(r, r̂), (6)

where r is the reward inferred from demonstrations, r̂ is
the reward from our domain knowledge, and λ is a trade-
off parameter. The kernel function k is a Gaussian kernel
k(xi, xj) = e−||xi−xj ||

2/2σ2

as in most knowledge trans-
fer frameworks (Long et al. 2017). Following (Wulfmeier,
Rao, and Posner 2016), we pretrain a θ̂ to match our domain
knowledge r̂ and initialize θ with this pretrained parameter.

Policy Learning Performance
To evaluate how well the reward function recovered by
our model approximates players’ behavior, we compare the
demonstrated trajectories with the probabilistic distribution
over trajectories generated by our algorithm using two com-
mon metrics: negative log-likelihood (NLL) and modified
Hausdorff Distance (MHD) (Kitani et al. 2012).

NLL(ζ) = Eπ(a|s)[− log
∏
t

P (st+1|st, at)] (7)

MHD({ζd}, {ζg}) = max(h({ζd}, {ζg}), h({ζg}, {ζd}))

h({ζ}, {ζ̂}) = 1

|{ζ}|
∑
ζi∈{ζ}

min
ζ̂j∈{ζ̂}

||ζi − ζ̂j || (8)



NLL calculates how likely the demonstrations are under
policy π, and MHD is a spatial measure of the distance be-
tween demonstrated and generated trajectories. The (opti-
mal) policy π is first got via solving MDP given reward. Ta-
ble 1 shows the results. Using rule reward only cannot pre-
dict any demonstrated trajectories because too many states
are assigned visitation probability 0. The reward recovered
by IRL with domain knowledge outperforms its counterparts
in both comparisons, where lower numbers represent models
approximating expert behaviour with higher precision.

Methods NLL HMD
Rule reward function - 13.37
IRL recovered reward function 57.3 9.71
IRL+Rule recovered reward function 52.7 7.77

Table 1: Evaluation of trajectory likelihoods under optimal
policies derived from different reward functions. Likelihood
metrics used are NLL and HMD.

Player Evaluation
We first define the action impact values and then give exam-
ples of player ranking.

Action Impact Values
Action impact, which quantifies the difference made by an
action, has been used for player evaluation (Routley and
Schulte 2015; Schulte et al. 2017; Liu and Schulte 2018).
We adopt action impact values as a function of game con-
text (Markov state) defined by (Routley and Schulte 2015)

impact(s, a) ≡ QT (s, a)− VT (s), (9)

where T is the team executing the action a, Q(·) is the Q-
function, and V (·) is the value function. This action impact
function measures how much an action improves over the
average action. The value of a state is defined as the ex-
pected total reward given a policy, and the Q-function and
value function can be calculated using the expected Bellman
equation (Sutton and Barto 1998).

Player Rankings
Following (Liu and Schulte 2018), the ranking score for a
player is the sum of this player’s total action impact values,
which is expressed as

Scorei =
∑
s,a

niD(s, a)× impact(s, a), (10)

where D denotes the dataset we use, i is the playerId, and
niD(s, a) is the occurrence number that player i performed
action a at state s observed from D. The total impact is
not normalized for time-on-ice (TOI), because TOI corre-
lates with player strength. Dividing the ranking score by TOI
therefore reduces the score differences among players. Note
that impact values can be both positive and negative, so a
high total impact reflects the net value of a player’s actions,
rather than the total number of the actions.

Different from (Routley and Schulte 2015; Liu and
Schulte 2018) where all the players are evaluated together,

Name Assists Goals Points Team Salary
Anze Kopitar 38 22 60 LA 11,000,000

Aleksander Barkov 61 35 96 FLA 6,900,000
Dylan Larkin 41 32 73 DET 7,000,000

Mark Scheifele 46 38 84 WPG 6,750,000
Jack Eichel 54 28 82 BUF 10,000,000

Jonthan Toews 46 35 81 CHI 9,800,000
Leon Draisaitl 55 50 105 EDM 9,000,000

Nathan Mackinnon 58 41 99 COL 6,750,000
Mika Zibanejad 44 30 74 NYR 5,350,000
Sebastian Aho 53 30 83 CAR 12,000,000

Table 2: 2018-19 Top-10 offensive players

Name Assists Goals Points Team Salary
Drew Doughty 37 8 45 LA 12,000,000
Miro Heiskane 21 12 33 DAL 925,000
Duncan Keith 34 6 40 CHI 3,500,000
Brent Burns 67 16 83 SJ 10,000,000
Roman Josi 41 15 56 NSH 4,000,000

Mattias Ekholm 36 8 44 NSH 4,000,000
Morgan Rielly 52 20 72 TOR 5,000,000

Ryan Suter 40 7 47 MIN 9,000,000
Ivan Provorov 19 7 26 PHI 6,750,000

Esa Lindell 21 11 32 DAL 7,000,000

Table 3: 2018-19 Top-10 defensive players

we evaluate offensive players (Center, Left Wing, Right
Wing) and defensive players (Defenceman, Goalie) sepa-
rately with the following considerations. First, previous RL
methods with sparse reward rank offensive players higher
than defensive players in most cases. Second, these two
types of players play different roles in a team under diverse
strategies leading to distinct behavior.

Tables 2 and 3 list the top-10 highest impacts offensive
and defensive players by our algorithm. All these play-
ers are fantasy NHL stars according to recent NHL news
(Jensen 2019; Reese 2019). Our ranking can be used to iden-
tify promising players. For instance, Miro Heiskane just be-
gan his career in 2017 and drew salaries below other top
ranking players but is nominated as top-50 Defenseman by
NHL (Reese 2019). Our ranking does not have apparent
bias to player position compared with two recent RL meth-
ods, Score Impact (SI) (Routley and Schulte 2015) and Goal
Imapct Metric (GIM) (Liu and Schulte 2018). For instance,
the top-50 players given by SI are all offensive players, and
top-50 by GIM only contains one Defenceman, while ours
contains 34 Defencemen.

Empirical Evaluation
To access player evaluation metrics, we follow previous
work (Routley and Schulte 2015; Schulte et al. 2017;
Liu and Schulte 2018) to compute their correlation with
commonly used statistic measurements like Assists, Goals,
Points, as these statistics are generally regarded as important
measures of player strength.

We compare our method with the following player eval-
uation metrics. Plus-minus (+/-) is a commonly used ba-
sic metric to measure the influence of player presence to
the goals (Macdonald 2011). Valuing Actions by Estimating
Probabilities (VAEP) defines the impact of an action as its



Methods Assists GP Goals GWG SHG PPG S
+/- 0.269 0.086 0.282 0.278 0.118 0.124 0.156

VAEP 0.215 0.185 0.215 0.089 -0.074 0.160 0.239
WAR 0.591 0.322 0.742 0.571 0.179 0.610 0.576
EG 0.656 0.629 0.633 0.489 0.099 0.391 0.737
SI 0.717 0.633 0.975 0.665 0.249 0.770 0.860

GIM 0.757 0.772 0.781 0.518 0.147 0.477 0.795
IRL 0.855 0.881 0.810 0.587 0.123 0.511 0.901

IRL-DK 0.874 0.890 0.820 0.601 0.125 0.528 0.907
Methods Points SHP PPP FOW P/GP SFT/GP PIM

+/- 0.285 0.179 0.157 0.012 0.306 0.109 0.100
VAEP 0.235 -0.076 0.185 0.021 0.204 0.129 0.172
WAR 0.692 0.147 0.605 0.040 0.699 0.396 0.145
EG 0.694 0.183 0.508 0.254 0.644 0.713 0.355
SI 0.869 0.204 0.708 0.135 0.728 0.639 0.361

GIM 0.818 0.151 0.561 0.289 0.705 0.751 0.372
IRL 0.887 0.207 0.696 0.295 0.741 0.818 0.439

IRL-DK 0.902 0.210 0.723 0.298 0.760 0.820 0.445

Table 4: Correlation with success measures (offensive)

offensive score plus defensive score (Decroos et al. 2019).
Because our dataset was too large to be processed by the
VAEP authors’ code, we replaced the gradient-boosted tree
of the original implementation by a neural network clas-
sifier. Win-Above-Replacement (WAR) estimates the dif-
ference of team’s wining chance if a target player is re-
placed by an average player (Gerstenberg et al. 2014). Ex-
pected Goal (EG) weights each shot by its chance of lead-
ing to a goal. Scoring Impact (SI) is most related to our
method, but uses a sparse reward (Routley and Schulte 2015;
Schulte et al. 2017). Goal Impact Metric (GIM) uses deep
Q-network with sparse reward to predict Q values and de-
fines the difference between two consecutive Q values as ac-
tion impact (Liu and Schulte 2018). We also adopt the IRL
method without domain knowledge as a baseline.

Season Totals: Correlations with Standard Success
Measures
The following experiment computes the correlations
with success measures over the entire season. The
NHL official website provides 14 standard success mea-
sures (www.nhl.com/stats/player), including Assists, Goals,
Points, Game Play (GP), Game Wining Goal (GWG), Short-
handed Goal (SHG), Power-play Goal (PPG), Shots (S),
Short-handed Point (SHP), Power-play Point (PPP), Face-
off Win Percentage (FOW), Points per game (P/GP), Shifts
per game (SFT/GP), and Penalty Minute (PIM). The results
for offensive and defensive players are shown in Tables 4
and 5. Our method achieves the highest correlation in 10
out of 14 success measures except for goal and three goal
related items (GWG, SHG, and PPG). For GWG, our re-
sults are comparable to the highest for both offensive and
defensive player measures. For SHG and PPG, it achieves
the second best results or comparable to the second best.

Round-by-Round Correlations: Predicting Future
Performance from Past Performance
A sport season normally consists of several rounds. A team
or player will finish n competitions at the end of round n. We
compute the correlation between player values at the end of
round n and three main success measures, including Assists,

Methods Assists GP Goals GWG SHG PPG S
+/- 0.173 0.132 0.144 0.177 0.235 -0.116 0.113

VAEP 0.054 -0.045 0.005 0.010 0.384 0.071 -0.016
WAR 0.204 0.028 0.365 0.275 0.097 0.246 0.186
EG 0.589 0.688 0.507 0.321 0.327 0.306 0.679
SI 0.607 0.488 0.934 0.449 0.491 0.457 0.709

GIM 0.702 0.862 0.596 0.263 0.130 0.170 0.764
IRL 0.809 0.943 0.656 0.410 0.267 0.326 0.897

IRL-DK 0.839 0.950 0.685 0.429 0.281 0.346 0.913
Methods Points SHP PPP FOW P/GP SFT/GP PIM

+/- 0.175 0.107 -0.05 0.095 0.169 0.067 0.072
VAEP 0.042 0.065 -0.003 0.101 0.064 -0.036 -0.031
WAR 0.252 0.128 0.266 0.174 0.279 0.006 -0.089
EG 0.611 0.278 0.399 0.118 0.503 0.694 0.360
SI 0.720 0.174 0.488 0.103 0.521 0.499 0.272

GIM 0.730 0.085 0.358 0.140 0.471 0.706 0.438
IRL 0.841 0.281 0.549 0.184 0.557 0.776 0.559

IRL-DK 0.853 0.289 0.553 0.185 0.643 0.778 0.570

Table 5: Correlation with success measures (defensive)

Figure 1: Correlations between round-by-round metrics and
season totals for offensive players

Goals, and Points, over the whole sport season. This experi-
ment assesses the learning ability of different metric, so that
the future performance of players can be inferred from the
past performance. We also compute the auto-correlation for
different metrics between players’ round values and final
season values. Auto-correlation evaluates the temporal con-
sistency of a metric (Pettigrew 2015). Since most players’
strength is stable throughout a season, a good player metric
should show temporal consistency (Franks et al. 2016).

We focus on four machine learning based methods VAEP,
SI, GIM, and IRL-DK. Figure 1 shows round-by-round cor-
relation with Assists, Goals, Points, and the auto-correlation
between round values and season total for offensive play-
ers. IRL-DK is the most stable model measured by auto-
correlation. We also find IRL-DK is able to learn knowledge
faster from data, as its performance is better than others even
at the very beginning of the season.



Conclusion
We investigate inverse reinforcement learning for profes-
sional ice hockey game analytics. We apply IRL with do-
main knowledge to recover reward for complex game dy-
namics, which addresses the sparse reward issue for RL
models. Based on the recovered reward function and cal-
culated Q-values, we build a context-aware player perfor-
mance metric that provides a comprehensive evaluation for
both offensive and defensive players in NHL by taking all
their actions into account. In experiments our method shows
no obvious bias for any player position, achieves highest cor-
relation with most standard success measures, and is most
temporally consistent. While we have focused on ice hockey
for concreteness, the inverse RL method can be applied to a
Markov model for any sport.
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Top players given by other metrics
The top-50 players given by SI (Routley and Schulte 2015)
are all offensive players. Tables 6 and 7 list the top-10 high-
est impacts offensive and defensive players by SI. The rank-
ing is based on the 2018-19 season.

Name Assists Goals Points Team Salary
Alex Ovechkin 38 51 89 WSH 10,000,000
John Tavares 41 47 88 TOR 15,900,000

Leon Draisaitl 55 50 105 EDM 9,000,000
Cam Atkinson 28 41 69 CBJ 7,375,000
Alex Debrincat 35 41 76 CHI 800,000
Steven Stamkos 53 45 98 TBL 9,500,000
Jake Guentzel 36 40 76 PIT 7,000,000
Brayden Point 51 41 92 TBL 5,250,000
Patrick Kane 66 44 110 CHI 9,800,000

David Pastrnak 43 38 81 BOS 6,800,000

Table 6: SI Top-10 offensive players

Name Assists Goals Points Team Salary
Morgan Rielly 52 20 72 TOR 5,000,000

Dougie Hamilton 21 18 39 CAR 6,000,000
Kris Letang 40 16 56 PIT 7,250,000

Mark Giordano 57 17 74 CGY 6,750,000
Jared Spurgeon 29 14 43 MIN 5,500,000

Matt Dumba 10 12 22 MIN 7,400,000
Shea Weber 19 14 33 MTL 6,000,000

Erik Gustafsson 43 17 60 CHI 1,800,000
Alex Pietrangelo 28 13 41 STL 7,500,000

Roman Josi 41 15 56 NSH 4,000,000

Table 7: SI Top-10 defensive players

The top-50 players given by GIM (Liu and Schulte 2018)
contains 49 offensive players and one defensive player. Ta-
bles 8 and 9 list the top-10 highest impacts offensive and
defensive players by GIM.

Name Assists Goals Points Team Salary
Sidney Crosby 65 35 100 PIT 9,000,000
Mark Scheifele 46 38 84 WPG 6,750,000
Leon Draisaitl 55 50 105 EDM 9,000,000

Jonathan Toews 46 35 81 CHI 9,800,000
Anze Kopitar 38 22 60 LA 11,000,000

Aleksander Barkov 61 35 96 FLA 6,900,000
John Tavares 41 47 88 TOR 15,900,000

Sean Couturier 43 33 76 PHI 4,500,000
Nicklas Backstrom 52 22 74 WSH 8,000,000
Connor McDavid 75 41 116 EDM 14,000,000

Table 8: GIM Top-10 offensive players

Name Assists Goals Points Team Salary
Drew Doughty 37 8 45 LA 12,000,000
Jaccob Slavin 23 8 31 CAR 5,500,000
Samuel Girard 23 4 27 COL 700,000

T.J. Brodie 25 9 34 CGY 4,837,500
Michael Matheson 19 8 27 FLA 3,500,000

Thomas Chabot 41 14 55 OTT 832,500
Shea Theodore 25 12 37 VGK 5,200,000
Dmitry Orlov 26 3 29 WSH 6,500,000
Ivan Provorov 19 7 26 PHI 6,750,000
Morgan Rielly 52 20 72 TOR 5,000,000

Table 9: GIM Top-10 defensive players

The top-50 players given by VAEP (Decroos et al. 2019)
contains 38 offensive players and 12 defensive players. Ta-
bles 10 and 11 list the top-10 highest impacts offensive and
defensive players by VAEP.

Name Assists Goals Points Team Salary
Jack Eichel 54 28 82 BUF 10,000,000

Ryan Getzlaf 34 14 48 ANA 8,275,000
Mika Zibanejad 44 30 74 NYR 5,350,000
Sidney Crosby 65 35 100 PIT 9,000,000
Brock Nelson 28 25 53 NYI 8,000,000

Lars Eller 23 13 36 WSH 4,000,000
Zach Aston-Reese 9 8 17 PIT 1,000,000

Chris Kreider 24 28 52 NYR 4,000,000
Nikita Kucherov 87 41 128 TBL 12,000,000
Leon Draisaitl 55 50 105 EDM 9,000,000

Table 10: VAEP Top-10 offensive players

Name Assists Goals Points Team Salary
Jonas Brodin 14 4 18 MIN 5,750,000
Jaccob Slavin 23 8 31 CAR 5,500,000

Mark Giordano 57 17 74 CGY 6,750,000
Jake Gardiner 27 3 30 TOR 3,650,000
Jordie Benn 17 5 22 NYR 2,400,000

Anton Stralman 15 2 17 TBL 5,500,000
Ryan Suter 40 7 47 MIN 9,000,000

Trevor Van Riemsdyk 11 3 14 CAR 2,500,000
Esa Lindell 21 11 32 PHI 7,000,000

Duncan Keith 34 6 40 ARI 3,500,000

Table 11: VAEP Top-10 defensive players


