
Basketball strategy design: a simulation approach

Guilherme Otranto 1, Leonardo Lamas 2, Junior Barrera 1

1 Institute of Mathematics and Statistics - University of São Paulo
2 Faculty of Physical Education - University of Brasilia

Abstract

The goal of this study was to create a basketball game
simulator capable of applying user defined strategies to
guide the behavior of the agents in the simulation. For
this purpose, we created a formal strategy model to de-
scribe complex team behavior and developed methods
of using that model to calculate collective plans. We de-
fined both the strategy model and the planning methods
in a broad manner that can be applied in many differ-
ent domains. Then we defined a basketball simulation
domain and implemented our methodology. The result-
ing formal strategy model for basketball can be used to
represent team behavior, analyze real world events and
create simulations that indicate how different strategies
perform against each other.

Introduction
Performance analysis in basketball has presented a fast in-
crease in the past few years (Gudmundsson and Horton
2017). Benefited by progressively availability of game track-
ing data, acquired in quite high frequency for the purpose of
use, these researches provide insights on individual (Lucey
et al. 2014) and collective behaviors (Oh, Keshri, and Iyen-
gar 2015) during games, contributing for predicting out-
comes even in specific tactical circumstances of a ball pos-
session (Cervone et al. 2016).

In this “big data” scenario, data-driven approaches pro-
liferate and, eventually, some of them explore the control
of players’ behaviors, based on the data assessed during
games (Felsen and Lucey 2017), referring to planning is-
sues. In team sports, there is vast empirical literature deal-
ing with planning, according to the so-called team strat-
egy. Nonetheless, fewer scientific contributions have been
given to this topic (Lamas et al. 2014a; Lennartsson, Lid-
ström, and Lindberg 2015; Otranto 2017), which is central
for enabling cooperation in every multi-agent competitive
environment, including a basketball game (Otranto 2017;
Lamas et al. 2014a). Hence, our initial goal was to create
a realistic basketball game simulator that accepted the user’s
input as a guide to the collective team behavior.

The main challenge in creating a team sport simulator
with user defined strategy is the complexity of the domain.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In sports, there is an infinite number of different possible
situations (i.e., domain states) where our simulator must be
able to provide an action plan for each player. We would also
like that plan to be consistent with some user defined strat-
egy for every possible situation. To make this task possible,
we created a method that simplifies the domain by aggregat-
ing similar situations into equivalence classes. This allows
us to plan actions in a domain with a finite and known num-
ber of possible states and later translate those actions to the
original domain. It also allows the user to provide meaning-
ful strategies by specifying actions for each class of states in
the simplified domain.

Our work is divided in two parts that will be described
in this document. The first part details the model for simpli-
fying a continuous and infinite domain into a discreet and
finite domain. The second part details the methods that we
can use to apply results acquired in the simplified domain to
the original one. For any situation in the original domain we
can extract an action play in three steps: 1 - identify a rep-
resentative state in the simplified domain; 2 - extract a plan
using the desired user defined strategy; 3 - adapt the actions
of the plan for the particular situation of the original domain.

Formal Strategy Model
We developed a formal strategy model capable of describing
a control system for a team of agents in complex environ-
ments. While our initial effort was aimed at using the strat-
egy model to describe team strategy in invasion team sports
environments (e.g., soccer, basketball, hokey), the resulting
system is generic enough to be used outside this domain. In
its essence, the strategy model creates equivalence classes
of the domain’s state space and thus allows for a compact
representation of only the strategically significant data.

The formal strategy model creates a structured represen-
tation of the desired collective behavior of a team of agents
collaborating towards some shared goal. It is a descrip-
tion language for any team strategy. We name a specific
team strategy, described through our model, a Team Strat-
egy Model (TSM).

Our model was created to control a team of agents in a
cooperative dynamic stochastic system. The system can also
be competitive, in which case each team will use its own
TSM to control their actions. A domain is compatible with
our formal model if it has:



• A state space S, which can be infinite and non-
enumerable, where each state s ∈ S can be described by
a finite set of variables V .

• An action space A(s) for each state s ∈ S.
• A non-empty set of possible outcomes O, ∀a ∈ A(s),
∀s ∈ S. An outcome o ∈ O(s, a) is a state of the state
space S.

• For each s, s′ ∈ S and variable v ∈ V such that only the
value of v differs between s and s′, there is an outcome
o ∈ O(s, a) for some action a ∈ A(s) such that o = s′.
Note that both the state space and the action space can be

infinite. The first due to continuous variables in V and the
second by utilizing parametric actions. Any domain can be
compatible with our model if: 1 - states can be described by
a finite set of variables; 2 - we know at least one possible
outcome for every action; 3 - we have a control action that
can change the value of each variable. A TSM can be applied
to domains where the state space is infinite due to the use of
equivalence classes to restrict and group the state space to
contain only relevant strategic situations.

Strategy Map
The strategy map (SM) is a representation of a class of rele-
vant situations for some strategy defined in a TSM. The SM
can group any number of states in the domain’s state space
into a single state in the TSM. Our formal model allows the
SM to create equivalence classes in one of two ways: infor-
mation omission or information grouping.

Information omission is analogous to the “don’t care”
variables used when creating intervals in boolean algebra
(Hill and Peterson 1968). If a state can be described by a
set of variables V and there is a subset Vs ⊆ V , then an
equivalence class can be created by assigning values to ev-
ery v ∈ Vs while omitting all v′ /∈ Vs. Every state in the do-
main for which the values of every v ∈ Vs coincide with the
assigned values will be captured by this equivalence class,
regardless of the values of the variables not in Vs. One could
create an all encompassing class by setting Vs = ∅, which
can be useful in error handling.

Information grouping defines discreet and finite intervals
to describe continuous variables in a manner analogous to
interval creation in continuous variables statistical analysis.
The interval creation is done by delimiting the possible val-
ues of some continuous variable. Take, for instance, some
v ∈ V such that v is a real number (v ∈ IR), then we can
define values a, b ∈ IR and the interval [a, b]. Every state
where v ∈ [a, b] could be captured by the defined equiv-
alence class. More broadly, any variable in V that belongs
to a group with well defined order (e.g., IN, II, IR) can be
described by an equivalence class through this method.

For each variable in a domain, the SM can either create
an interval or omit the variable completely. The SM also de-
fines a weight for each variable, which signifies the relative
importance of that constraint over the others. This weight is
useful when measuring how closely a SM is describing some
domain situation.

For a domain with set of variables V , a SM is formally
defined as a set of constraints C, where each c ∈ C has:

• An associated variable v ∈ V , such that v ∈ G and G is
an ordered set with order <G.

• A start and an end bounds a, b ∈ G such that a <G b.

• A weight w ∈ IR∗.

Figure 1 illustrates the process of creating SMs in a do-
main with two continuous variables (v1 and v2). Both maps
define a constrain for each domain variable. SM1 con-
straints the variable v1 with c1 and the variable v2 with c2.
SM2 constraints the variable v1 with c′1 and the variable v2
with c′2.

Figure 1: Two strategy maps (SM1 and SM2) defined in a
continuous domain with two variables.

Strategy Transition
A strategy transition (ST) contains the necessary informa-
tion to inform the system of how the transitions between
SMs should occur in the TSM. A ST defines the actions
that should be executed when transitioning between states.
It would be impossible to specify valid actions to transition
between every possible combination of the original domain
states that are represented in the SMs, so the ST specifies do-
main actions necessary to transition between representatives
states of each SM. While the defined actions might not ac-
complish the transition between all the combinations, it pro-
vides enough information to guide the transition using the
methods described in this study. We define a ST as follows:

• An origin SM α.

• A destination SM β.

• Representative states αr ∈ α and βr ∈ β.

• A list of actions {a1, a2, ..., an} with ai ∈ A(si) and si ∈
S, ∀i ∈ [1, n] such that:

There is a list of states {s1, s2, ..., sn+1} with sj ∈ S,
∀j ∈ [1, n+ 1] where:
sx+1 ∈ O(sx, ax), ax ∈ A(sx), s1 = αr and
sn+1 = βr, ∀x ∈ [1, n]

Note that we use the notation αr ∈ α to indicate that αr

is a state in the original domain that obeys every constraint
defined in α (i.e., αr belongs to the equivalence class defined
by α). So, the ST selects a representative for each map and
provides a list of actions that may take the system from one
representative to the other. A list is valid as long as one of
the possible outcomes of every action leads to the next step
in the chain that eventually leads to the chosen destination.



It is important to note that {a1, a2, ..., an} are not neces-
sarily the most efficient way to transition between αr and
βr. They simply represent what the designer of the strategy
would like the agents to perform when they find themselves
in SM1 and wish to reach SM2. The choice of actions, rep-
resentatives and even SMs are up to the designer and our
objective is to apply them faithfully, not necessarily to con-
trol the agents in the best possible manner.

Figure 2: A strategy transition with actions {a1, a2, a3} and
representative states αr ∈ SM1 and βr ∈ SM2. Other out-
comes of actions a1 and a2 have been faded to improve read-
ability.

Strategy Graph
The strategy graph is a natural structure to represent the
TSM: a directed graph with SMs as the nodes and STs as
the edges. We use the graph to encode extra navigational in-
formation about the TSM. On each edge of the graph (i.e.,
for each ST) we encode a risk value that represents the prob-
ability of something going wrong during the transition and
on each node (i.e., each SM) we encode a reward value rep-
resenting how advantageous we consider the situations de-
scribed by that SM to be. Usually, a planning problem will
work with only one of those variables, but adapting the al-
gorithm to work with both values is trivial and we found that
such representation is more easily understood by the users.

If we know the probability distribution of the actions in
the domain, we have a good candidate for the risk value of a
ST: one minus the product of the probability of each action
leading to the next state in the chain. This is not required,
the risk and reward values encoded in the strategy graph can
be provided by the user or learned by the system through
simulations. Considering the risk to be the probability of a
transition to fail and the reward to be the expected accumu-
lated reward from that state after some time, we can estimate
those values after several simulation rounds.

We define a strategy graph as:

• A set of states S, each s ∈ S contains:

– A SM m.
– A reward value γ ∈ IR∗.

• A set of edges E, each e ∈ E contains:

– A ST t.
– An origin state α ∈ S.
– A destination state β ∈ S.

Figure 3: A simple strategy graph, the values for the risks
and rewards have been omitted.

– A risk value ω ∈ [0, 1].

Figure 3 shows what a simple strategy graph might look
like. The amount of states in the graph and the number of
edges leaving each state are indicators of the complexity
of the strategy encoded within. As we will discuss further
on, our tests indicated that fairly complex behavior emerges
with only a few dozen states in the strategy graph.

A graph contains the whole TSM of a team, but we do
not need to use the whole model all the time. It is possible
to define subsets of the graph to be used at different times,
for instance, one could exclude some states and transitions
that represent riskier behavior in order to apply a safer strat-
egy. A Finite State Machine (FSM) can be defined to control
which subset of the graph should be active at any given mo-
ment: the states of the machine would be graph subsets and
the transitions would be changes in key control parameters.
This sophistication allows the TSM to dynamically change
the team’s behavior based on high level changes in the envi-
ronment.

Event analysis using the formal model
A direct result of creating a formal strategy model is that we
can use it to analyze real world events that take place in the
domain described by our model. For any domain where we
can capture real world events and infer their corresponding
state in the domain’s state space, we can use a TSM to mea-
sure how well the event matches the model. We have so far
used this technique in the domain of invasion team sports
(Lamas et al. 2014b), where a state in the domain can be
usually described by the position of all the players and the
ball. Some studies have also attempted to infer the strategy
from real world events (Lucey et al. 2012).

There are significant efforts in the sport scientific commu-
nity to capture player’s movements and positioning during
matches. This information can be used to detect how closely
a team is following some TSM defined for that domain. Our
TSM works with equivalence classes so we can define very
broad classes and use only approximate positioning infor-
mation to analyze the match. We have worked with goal-
keeper analysis where the match information required could
be extracted by watching regular game video footage. The
only information needed was the area in the field where the
player with the ball was located and the goalkeeper’s general
position (Lamas et al. 2018).



Planning with the Strategy Model
By using the TSM in planning we can shift from a complex
domain to a much simpler planning domain. This enables
us to work with a finite, and often quite small, number of
possible states for the planning. In this section we will show
how we can apply plans calculated in the TSM to some state
in the original domain. For clarity, we will call a state in the
original domain a situation.

The objective of the planning process is: given some ini-
tial situation, calculate applicable actions that are consistent
with some input strategy. One issue we need to deal with
is that the situations and actions exist in a different domain
than the one where the strategy is defined. In order to solve
this we created 2 translation functions: one that maps a situ-
ation to a state in the strategy and a second that maps tran-
sitions in the strategy to actions in the original domain. Our
approach to planning using a TSM requires 3 separate steps:

1. Matching: Translate a situation into a SM of the TSM.

2. Planning: Extract a plan from the TSM.

3. Realization: Adapt the plan so it fits the situation.

The Matching Function
The objective of the matching function is to find the SM
in the TSM that best represents some situation. In order to
do this, a metric is established that measures how well any
given SM represents a situation. While it would be trivial
to search for a SM whose equivalence class encompasses
the situation, we have no guarantees that such a SM exists
for every situation in the original domain. A metric solves
this problem by allowing some error to be introduced to
the matching process when required. This is similar to the
nearest-neighbor approach in machine learning. As noted in
(Blum and Langley 1997), such approach is very sensitive to
what attributes are used in the metric. We follow their idea of
defining weights for each variable used by the metric, thus
providing a tool to remove irrelevant attributes.

Given a metric µ to measure distance between SMs and a
given situation, the matching function is quite simple: sim-
ply return the SM in the TSM that minimizes the distance to
the situation being matched. In order to define µ, consider
the following:

• Let {v1, v2, ..., vn} be the set of all domain variables in
V .

• Let {G1, G2, ..., Gn} be groups with orders {<G1, <G2

, ..., <Gn} such that vi ∈ Gi, ∀i ∈ [1, n].

• For each i ∈ [1, n], let functions δi: G2
i → IR∗ be such

that δi(x, y) with x, y ∈ Gi represent the distance be-
tween x and y in Gi.

• Let a situation be described by the variables
{x1, x2, ..., xn}.

• Let a SM be defined by:

– A set of omitted variables O = {o1, o2, ..., ok}.
– A set of grouping intervals I = {q1, q2, ..., ql}, with

components qi.a and qi.b being the start and end
bounds respectively.

– Such that k + l = n.
• Without loss of generality assume SM = {O, I} =
{c1, c2, ..., cn} and that ci is the constraint of xi, ∀i ∈
[1, n].

• Let {w1, w2, ..., wn} ∈ IRn be the weights of the con-
straints of SM.
With the above assumptions we are ready to de-

fine the metric µ to compare the situation described by
{x1, x2, ..., xn} and a SM. We do this by creating sub-
metrics {µ1, µ2, ..., µn} such that:

µi =

{
0 if i ≤ k
0 if qi.a <Gi xi <Gi qi.b
mini otherwise

(1)

with:
mini = min(δi(xi, qi.a), δi(xi, qi.b)) (2)

Then we can finally define µ simply as:

µ =
n∑

i=1

µiwi (3)

For a variable v ∈ G, the distance function δ : G2 → IR∗

can be any domain specific function that suits a need, but it
is worth mentioning that the Euclidean distance works well
whenG is II2 or IR2. WhenG is II or IR the absolute value of
the difference also works well. In any of the two cases, one
might want to consider using the squared value of the result
in order to penalize greater differences in favor of multiple
smaller ones.

Figure 4 illustrates the matching function. Simply put, the
matching function will calculate a distance between each
variable in the situation’s description and the correspond-
ing constraint in the SMs. Then it calculates a weighted sum
using those distances and selects the SM that minimizes the
sum to represent the situation in the TSM.

Figure 4: An example of the matching function. The situa-
tion marked in red is matched to SM1 after µ1 and µ2 are
calculated.

The Planning Function
The objective of the planning is to calculate a sequence of
STs that starts in the SM found by the matching function.
The risk and reward values in the strategy graph are used to
calculate the ideal sequence of STs, which we will refer to
as a play. So a play is a path in the strategy graph that begins



in the SM that best describes the current domain situation, as
calculated by matching. It would be trivial for this process
to calculate a play that maximizes some constraint, such as
reward divided by risk, specially due to the small size of the
strategy graph. However, the objective is to extract different
plays in a manner consistent with the TSM, resulting in a
more realistic and unpredictable behavior.

We would like to explore the TSM in a manner that is
consistent with the intent of the strategy designer. There-
fore, we cannot always simply pick the play that maximizes
some constraint, but we can use the constraint to prioritize
our play selection. We do this by defining a score for each
play and then we use this score to define a distribution over
which we will randomly select the play we want. Ideally,
the plays with lower risk and greater rewards in the TSM
should be picked more often, while increased risks or lower
rewards should decrease the chance of a play being selected.
This is a balance between exploration (trying every play)
and exploitation (using better plays more often). This ap-
proach borrows heavily from the literature on Monte Carlo
Tree Search methods (Browne et al. 2012) and have been
used successfully in domains where there is uncertainty or
the domain is not fully observable.

Let’s define a score function ψ for some play defined in a
strategy graph with states S and edges E:

• Consider a play as p = {e1, e2, ..., en}, with ei ∈ E,
∀i ∈ [1, n] and:

– ei.β ∈ S is the destination state of edge ei.
– ei.β.γ ∈ IR∗ is the reward value of state ei.β.
– ei.ω ∈ IR∗ is the risk value of edge ei.

Then ψ is a function ψ:En → IR∗ calculated as:

ψ(p) =

n∑
i=1

(1− ei.ω) ei.β.γ (4)

We use (1 − ei.ω) because it has an intuitive meaning:
if ei.ω is the probability that a transition will fail, then
(1−ei.ω) is the probability that it will succeed. The function
ψ manages to capture the reward associated with a play in
the strategy graph as well as the probability of acquiring the
reward. If the reward associated with any state is zero, or if
the risk associated with any edge is one, then the value of ψ
is zero. This might not be desirable, since it would mean the
state (or edge) is useless in the strategy and so is any play us-
ing it. To avoid this we can introduce a small value δ ∈ IR+,
δ � 1 and use it to clamp the values in the calculations, like
so:

ψ(p) =

n∑
i=1

max(δ, (1− ei.ω))max(δ, ei.β.γ) (5)

This ensures that every play as a non-zero probability of
being picked, which makes sense if we consider that: 1 - the
play can be extracted from the strategy graph; 2 - the user
designed the strategy graph to contain the play. We consider
two methods of picking a play, the long-term and the short-
term planning:

• Short-term planning: A play is assembled one edge at a
time, starting at the initial state and adding edges until
there are no more eligible edges. An eligible edge is an
edge whose origin state is the current state and whose des-
tination state is not yet part of the play. To pick the next
edge we list every eligible edge and pick one as follows:
– Let {e1, e2, ..., en} be the set of eligible edges in E.
– Let {ψ({e1}), ψ({e2}), ..., ψ({en})} be the score of

the single edge plays defined above.

– Let T =
n∑

i=1

ψ({ei}).

– Pick an edge in a way that P (ei) = ψ({ei})/T is the
probability of edge ei being picked, ∀i ∈ [1, n].

• Long-term planning: Every possible play that starts from
the initial state is listed and one is selected as follows:
– Let {p1, p2, ..., pk} be the set of possible plays.
– Let {ψ(p1), ψ(p2), ..., ψ(pk)} be the scores of those

plays.

– Let T =
k∑

i=1

ψ(pi).

– Pick a play in a way that P (pi) = ψ(pi)/T is the prob-
ability of play pi being picked, ∀i ∈ [1, k].

A simple way to pick a play such that each pi has the prob-
ability P (pi) = ψ(pi)/T of being chosen is to uniformly
pick a value v ∈ (0, T ] and choose the play pi such that:

i∑
j=1

ψ(pj) < v ≤
i+1∑
j=1

ψ(pj) (6)

An analogous method can be used to select the next edge
in the short-term play calculation. The difference between
the methods of planning are indicative of the behavior we
want to simulate. The short-term approach utilizes a greedy
algorithm to create a play, which means that the immediate
edges that are more attractive get selected more often. This
could lead down a path with less attractive options, result-
ing in an overall worse play being selected more often than
better options. This is not necessarily a bad thing, in some
domains the greediness of this algorithm and the resulting
quirk in the selection could be desirable traits for the sim-
ulation. If that is not the case, the long-term approach cal-
culates an overall ideal distribution by comparing full plays.
The difference in performance from both approaches can be
ignored due to the small size of the strategy graphs.

The Realization Function
The realization function is responsible for ensuring that a
play calculated by the planning function can be applied to
the situation in the original domain and still accomplish the
same behavior specified in the TSM. There are two parts of
this adaptation that need to be considered, which we will call
corrections:

1. The matching correction: This correction aims to fix the
error introduced by the matching function. The amount of
error introduced is measured by the µ metric defined in
“The Matching Function”.



2. The planning representative correction: This correction
aims to fix the error introduced when we pick a single
representative state αr to represent a whole class of situa-
tions when defining a ST in “Strategy Transition”.
There are several approaches that can be employed to

make the necessary corrections, but they are variations be-
tween adapting the situation to fit the play or adapting the
play to fit the situation. In order to adapt the situation we
must add some actions to the beginning of the play so we
can reach a more compatible state. In order to adapt the play
we must change the actions within it so that they are com-
patible with the current situation.

Every adaptation made by the realization function uses
the domain restriction mentioned in “Formal Strategy
Model”: there is always an action to control the value of a
variable in V . In continuous domains this means that there
are parametric actions to control the continuous variables.
For instance: in a domain where there is a variable v ∈ IR3

to control an object’s position in space, there will be an ac-
tion a ∈ A(s), ∀s ∈ S that changes that object’s position
to some arbitrary x ∈ IR3. We will now formalize the pro-
cess used to make each adaptation used by the approaches
described above. We will use the same definition of a SM as
we have in “The Matching Function”.

There are 3 types of corrections that we use, and the fol-
lowing will describe how each correction can be accom-
plished:

1. Adapt x ∈ S to a SM: for every variable v ∈ V such that
v ∈ G with order <G and x.v is the value of that variable
in x:
• If v ∈ O: nothing needs to be done.
• If v ∈ I and qv.a ≤G x.v ≤G qv.b: nothing needs to

be done.
• If v ∈ I and x.v ≤G qv.a: create an action with out-

come such that x′.v = qv.a when it is applied to x.
• If v ∈ I and x.v ≥G qv.b: create an action with out-

come such that x′.v = qv.b when it is applied to x.
2. Adapt x ∈ S to y ∈ S: for every variable v ∈ V such that
v ∈ G with order <G and x.v and y.v are the values of
that variable in x and y respectively: create an action with
outcome such that x′.v = y.v after it is applied to x.

3. Adapt a ∈ A(y), y ∈ S to {a1, a2, ..., an} ∈ A(x)n,
x ∈ S: This can be done in a relative manner (i.e., change
both start and finish point of the action) or in an absolute
manner (i.e., change only the start point of the action).
• Relative: for every variable v ∈ V such that v ∈ G

with order <G that is changed by a, create an action
that creates this same change and apply it to x.
• Absolute: for every variable v ∈ V such that v ∈ G

with order <G that is changed by a, create an action
such that x.v = y.v after it is applied to x.

Results
As a result of the methods described above, we developed a
formal strategy model applied to basketball with the goal of
representing strategic knowledge in a structured manner that

could be useful for both match analysis and strategy simula-
tion by computer systems.

The Basketball’s Strategy Map
The SM in basketball is a representation of a class of match
situations idealized in the TSM defined by the user. In bas-
ketball a match situation can be defined by the positioning
of each player and the position of the ball. We defined the
variables in V for this domain as:

• A position in IR2 for each player.

• A velocity in IR2 for each player.

• A rotation in IR for each player.

• A ball holder index in IN.

• A ball position in IR2.

• A ball velocity in IR2.

The SM creates what we call a player role for each match
player in order to create the necessary equivalence classes
using the concept of “playing area”. The playing area is an
elliptical interval we used to group the position and rotation
information into an equivalence class. Furthermore, a SM
does not need to specify every player role, omitted ones will
simply enlarge the defined equivalence class to encompass
any position and rotation for the omitted player. The player
role can also indicate whether or not it has the ball. Every
other variable in the domain is grouped by omission (i.e.,
ignored by the SM). Figure 5 shows an example of a SM
where every player role was defined and player role 1 has
the ball. Only the playing areas for the offensive team have
been highlighted for simplicity.

Formally, we define a SM as a group of player roles P ,
where each player role p ∈ P has:

• A team identifier t ∈ {Offense, Defense}.

• A two dimensional center (x, y) ∈ IR2

• A rotation of the playing area α ∈ IR2. This is the angle
between the positive x-axis and the facing of the playing
area, counter-clock wise.

• A rotation tolerance αt ∈ IR∗.

• A dimension of the playing area (w, h) ∈ IR2.

• A boolean value indicating ball possession.

It is not easy to create a set of SMs that cover every possi-
ble match situation, much less one that makes sense strategi-
cally. Fortunately such a set is not required in our proposed
method. We created a matching function that allows any sit-
uation to be assigned to an existing SM, even if some er-
ror is introduced. So the specialist describing the SMs needs
to consider only those that are important to the TSM being
created. The number of SM necessary to describe complex
strategies is quite small. Some of the traditional basketball
strategies (e.g., triangles offensive), can be described with
no more than a few dozen SMs. This small number of SMs
greatly facilitates the handling of TSMs by computer sys-
tems, as well as facilitating the visualization by humans.



Figure 5: Strategy map with the playing areas highlighted in
red for the player roles in the offensive team. The highlight
on the lower left shows the variables that describe a single
player role.

The Basketball’s Strategy Transition
A ST allows the specialist to detail the necessary actions
the players must execute in order to transition between
SMs, these include: path and velocity of movement, passes,
throws, idle wait times, cuts, etc. The timing of the actions
(e.g., when the path of two player roles will cross) can be
specified through a combination of movement velocity and
idle wait times.

In order to choose the representative states for each SM,
we consider the position of every player to be the center
of the player role and we disregard the rotation tolerance.
Any omitted player roles are put into predetermined posi-
tions outside the court. This SM representatives place each
player in the mean position of every match situation encom-
passed by the SM. They also provide a natural representa-
tion of the transition when overlaid with the maps, since the
movement starts and ends in the center of the playing areas.

We define a ST as follows:

• An origin SM α.

• A destination SM β.

• A set of paths P , one for each player role in α and β.

• Each path p ∈ P contains a nonempty list of waypoints
W (p), each waypoint w ∈W (p) has:

– An initial wait time t ∈ IR∗.
– A start position (x, y) ∈ IR2.
– A movement speed s ∈ IR∗.
– An end position (x′, y′) ∈ IR2.
– A final wait time t′ ∈ IR∗.

• A set of passes B, each b ∈ B has:

– A start time t ∈ IR∗.
– The path p ∈ P that initiates the pass.
– The path r ∈ P that receives the pass.

• An optional shoot to basket time t ∈ IR∗.

A valid transition has a few requirements that need to be
enforced when it is being created. To ensure that the ST con-
tains an applicable set of actions whose execution can lead
from α to β: 1 - the start position of the initial waypoints
must coincide with their player role’s center in α; 2 - the
end positions of the last waypoints must coincide with their
player role’s center in β; 3 -each waypoint after the first must
start at the previous waypoint’s end position; 4 - for every
pass, the player role that initiates the pass must have ball
possession; 5 - the player with ball possession in the end
must have the ball in β.

Figure 6: A strategy transition with a single pass from player
1 to player 2.

The Basketball’s Strategy Graph
For the basketball’s strategy graph we chose to interpret the
risk as the probability of a transition failing due to some ac-
tion not yielding the desired result. This means a pass failing
due to an interception by the adversary, a fumble or a carry
failing due to the ball being stolen. The reward of a state is
simply the probability of the team scoring some points af-
ter being in that state. Both these values can be specified by
the user and they could also be estimated though simulation
after several rounds.

We define the strategy graph for basketball as:

• A set of states S, each s ∈ S contains:

– A state id.
– A SM m.
– A reward value γ ∈ [0, 1].

• A set of edges E, each e ∈ E contains:

– A transition id.
– A ST t.
– An origin state α ∈ S.
– A destination state β ∈ S.
– A risk value ω ∈ [0, 1].

A FSM to control which subset of the strategy graph is ac-
tive during any time in the match is very useful to enhance
the adaptability of the strategy. Each subset of the graph can



hold only the appropriate plays for some match situation. In
basketball, several match situations could be used to trig-
ger a state change in the FSM, for instance: time left on the
clock; match score; players on the court; current quarter be-
ing played. A designer can use this to create a specific set of
plays that should only be executed in very specific scenarios.

Discussion
The TSM described in this document has allowed the cre-
ation of a complex strategy model for basketball that has
already been used to describe complex strategies and it is
currently supporting the development of a fully fledged bas-
ketball simulator.

It was fairly straight forward to implement matching,
planning and realization functions for the basketball model.
The resulting planner can always provide a simulator with
a plan of relevant actions that fit the specified strategy. The
actions provided by the planner follow the the strategy spec-
ifications while maintaining some situational awareness that
may increase external validity of the simulation.

Figure 7: A realized plan for a single player (in black) and
the corresponding path in the TSM (in red).

The game simulation method we have developed allows
a specialist to specify his own basketball TSMs and ver-
ify how different strategies might react to each other. While
the development of a complete match simulator is still in
progress, a specialist can already visualize plays in motion
and study different aspects of his TSM in a dynamic envi-
ronment.

The TSMs that support the simulation procedures should
be specified according to a formal language which guaran-
tees systematic and accurate data input for the analysis of
strategies structures. Therefore, besides empirical results ob-
tained from teams’ interactions along the simulation, it sup-
ports the investigation of relations between obtained perfor-
mances and strategies’ features. For instance, strategies pre-
senting more derivation branches introduce greater unpre-
dictability by providing alternative play options and favoring
better rewards.

In conclusion, this study may indicate a promising re-
search field of artificial intelligence applied to basketball,
with several spin-offs for different sports and even other
fields.

Acknowledgments
LL is supported by Fundacao de Amparo a Pesquisa do
Distrito Federal:00193.00002099/2018-65 and Fundacao de
Amparo a Pesquisa do Estado de Sao Paulo: 2015/01587-
0. JB is supported by Fundacao de Amparo a Pesquisa do

Estado de Sao Paulo: 2015/01587-0. This research was sup-
ported by FAPESP proc. 15/01587-0 and FAPESP proc.
14/50937-1.

References
Blum, A. L., and Langley, P. 1997. Selection of relevant
features and examples in machine learning. Artificial intel-
ligence 97(1):245–271.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Cervone, D.; D’Amour, A.; Bornn, L.; and Goldsberry, K.
2016. A multiresolution stochastic process model for pre-
dicting basketball possession outcomes. Journal of the
American Statistical Association 111(514):585–599.
Felsen, P., and Lucey, P. 2017. Body shots: Analyzing shoot-
ing styles in the nba using body pose. In MIT Sloan, Sports
Analytics Conference.
Gudmundsson, J., and Horton, M. 2017. Spatio-temporal
analysis of team sports. ACM Computing Surveys (CSUR)
50(2):22.
Hill, F. J., and Peterson, G. R. 1968. Introduction to switch-
ing theory and logic design. Wiley.
Lamas, L.; Barrera, J.; Otranto, G.; and Ugrinowitsch, C.
2014a. Invasion team sports: strategy and match model-
ing. International Journal of Performance Analysis in Sport
14(1):307–329.
Lamas, L.; Santana, F.; Otranto, G.; and Barrera, J. 2014b.
Inference of team sports strategies based on a library of
states: application to basketball. In Proceedings of the 2014
KDD Workshop on Large-Scale Sports Analytics.
Lamas, L.; Drezner, R.; Otranto, G.; and Barrera, J. 2018.
Analytic method for evaluating players’ decisions in team
sports: Applications to the soccer goalkeeper. PloS one
13(2):e0191431.
Lennartsson, J.; Lidström, N.; and Lindberg, C. 2015. Game
intelligence in team sports. PloS one 10(5):e0125453.
Lucey, P.; Bialkowski, A.; Carr, P.; Foote, E.; and Matthews,
I. A. 2012. Characterizing multi-agent team behavior from
partial team tracings: Evidence from the english premier
league. In AAAI.
Lucey, P.; Bialkowski, A.; Carr, P.; Yue, Y.; and Matthews, I.
2014. How to get an open shot: Analyzing team movement
in basketball using tracking data. In Proceedings of the 8th
annual MIT SLOAN sports analytics conference.
Oh, M.-h.; Keshri, S.; and Iyengar, G. 2015. Graphical
model for baskeball match simulation. In Proceddings of
the 2015 MIT Sloan Sports Analytics Conference, Boston,
MA, USA, volume 2728.
Otranto, G. F. 2017. A formal model for strategic planning
in cooperative and competitive environments case study: de-
sign and implementation of a basketball simulator. Ph.D.
Dissertation, Universidade de São Paulo.


