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Abstract

Curling is a team sport in which two teams, each with four
players slide stones alternately on the ice. Curling is a very
strategic team sport so that where to deliver stones is crucial
to win. To discuss strategies in curling on the computer, the
curling playing simulator called digital curling” has been de-
veloped by Ito et al. We have developed a curling Al program
based on the game tree search. Following the previous work
by Yamamoto et al., we used the expected scores distribution
at the end of end for the evaluation function of the game tree
search, and developed a neural network model for predicting
the expected scores distribution from the game states. In this
paper, we extended our previous model by adding new fea-
tures of game states for the inputs. We analyzed our model’s
prediction ability and found that it is more difficult for our
model to accurately predict the expected scores distribution
for the state such that many stones exist in the play area and
many collisions will occur.

Introduction

Curling is a winter sport that has been designated as an of-
ficial event of the Winter Olympics since 1998. As it is said
to be “chess on ice”, it is a highly strategic game. Actually,
in curling, it is necessary for the players to not only have a
high level of technical ability to deliver accurate shots but
also correctly judge the game situations and consider what
is the best shot for the winning.

Digital curling has been developed by Ito et al. (Ito and
Kitasei 2015) to discuss curling strategies on a computer.
Uncertainty is implemented in the state transition to emulate
real curling. In digital curling, it is possible to analyze and
discuss better strategies by letting curling Als with different
strategies fight each other.

Curling is a team sport, but it can be regarded as a
two-player game like chess by considering one team as
one player. Curling Al has been developed based on the
game search, which is widely used for a two-player game.
For example, Ohto and Tanaka applied Monte-Carlo Tree
Search (MCTS) to digital curling (Ohto and Tanaka 2017).
The MCTS method has succeeded in many games includ-
ing the backgammon which is also with uncertainty like
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curling. As another approach, expectimax (Ballard 1983;
Hauk 2004) which is a game tree search algorithm for games
with uncertainty is applied to digital curling. Yamamoto et
al. discretize actions and states space to applying a game
tree search algorithm to digital curing. In their method, the
expected value of the game states is efficiently calculated by
convolving state values with the probability distribution of
arrival points of curing stone (Yamamoto, Kato, and lizuka
2015).

In this study, we aim to make the evaluation function more
accurate to analyze curling strategies. Yamamoto et al. pro-
pose the evaluation function using the expected scores distri-
bution at the end of end and its learning method (Yamamoto,
Kato, and lizuka 2018). We also use a neural network as the
model and propose adding new features to the input to the
model.

Curling

In curling, players slide stones towards the target circle area
called house”. The sliding action is also called “deliver” or
’shot”. In most cases, the stones used in the game are col-
ored by red or yellow. A team consists of four players. The
player of each team delivers stones alternating with the op-
ponent. In each end, each player delivers two stones, and
thus, each team delivers eight stones in total. A part of the
field seen from above is shown as Fig. 1. The stone is sup-
posed to be delivered upward. The stones delivered between
hog and back lines without touching the sidelines are re-
garded as valid plays. Otherwise, the stone will be removed
from the game. The player can adjust the velocity of the
stone even after the stone is delivered by “sweeping” the
surface of the ice with a brush.

The score is determined by the number of stones in house
after 16 stones are delivered by both teams at each end. The
team gains points by the number of stones that exist in or
touch the house and are closer to the center of the house
than any opponent’s stones. For example, the first and sec-
ond closest stones represented by A and B in Fig. 2 are yel-
low and the third closest stone represented by C is red, and in
that case, the team which has yellow stones gets two points.

Because it is considered advantageous to deliver the last
shot, the delivery order is switched: the scoring team deliv-
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Figure 1: A part of the curling sheet. The direction of the
stone is indicated by the blue arrow.

Figure 2: Example of the result at the end of end. Yellow
team gets two points.

ers the stone first at the next end. If the point for each team
is zero, the order is not switched. The game is composed
of either eight or ten ends. The number of ends is ten in
most national championships, but to save time the number
of ends is eight in many competitions. The team with the
higher overall scores wins.

The team that delivers the last stone can score relatively
easily by playing the stone closest to the center of the house
or placing the stone inside the stone. Therefore, they usually
try to get more than one point to expand the lead. On the
other hand, the team which delivers the first stone tries to
lose only one point to obtain the advantage to deliver the
last stone in the next end.

The stone trajectory changes depending on the direction
of rotation. When rotated clockwise, the trajectory curls to
the right and when turned counterclockwise, it curls to the
left. It is known that the stone trajectory does not change
greatly depending on the rotation speed. This turning of
stones increases the variety of strategies in curling.

Digital Curling

In curling, the strategy is very important and directly leads
to victory or defeat. In other words, it is necessary to be able
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Figure 3: The appearance of the digital curling.

to correctly judge where and how to deliver stones through-
out the game. However, the best strategy depends on the sit-
uation of the stone arrangement, the number of remaining
ends, score difference, etc. Since it is necessary to take into
account the uncertainty of the shot due to changes in the ice
surface condition and the skill of the player, it is further dif-
ficult to select the correct strategy.

To discuss and analyze curling strategies on a computer,
Ito et al. have developed the curling simulator which is
called digital curling (Ito and Kitasei 2015). Figure 3 shows
the appearance of digital curling. In the digital curling, two
curling Al can play the curling game based on the client-
server architecture. When the client passes the velocity and
turn of the stone to the server, the server simulates a delivery
of the stone with the given velocity and turn. The algorithm
described in the paper by Ito et al. (Ito and Kitasei 2015) is
used for the trajectory calculation, and the two-dimensional
physics engine Box2D is used for the collision calculation.

When the velocity and direction of rotation are obtained,
the result is uniquely determined, but the uncertainty be-
cause of the player’s skill is implemented by adding random
numbers (noise) according to a certain distribution to the ve-
locity obtained from the client. In addition to the velocity,
the arrival point of the shot is also deviated by noise which
follows a constant distribution.

In the case of arrival point, the noise distribution has a
larger variance in the y-direction than in the x-direction,
which reflects the fact that the adjustment of the weight (de-
livery speed) is more difficult in real curling. In real cur-
ing, the velocity of the stone can be dynamically adjusted
by sweeping action, and the variance in the velocity cannot
be simply expressed by the noise. However, for simplicity,
sweeping action is not implemented in digital curing, and the



variance of the velocity is simply expressed by the noise and
the scale of the noise is constant. Although digital curing
does not completely simulate real curing, it still simulates
the continuous and stochastic aspect of real curing. By de-
veloping curing Al that can perform a strong strategy, we can
investigate and analyze what strategy is effective for dealing
with such continuity and stochasticity.

Curling AI

In curling, the game progresses by two teams delivering
stones alternately. By considering one team as one player,
it can be regarded as a turn-based two-player game. In such
a two-player game, a game tree search is effective. For deal-
ing with uncertainty of digital curing, expectimax (Ballard
1983; Hauk 2004) can be used. However, it is not practical
to apply standard game tree search and expectimax to dig-
ital curing directly because the number of candidate moves
is innumerable as the candidate moves take continuous val-
ues of velocity and direction of rotation. To efficiently apply
game tree search and expectimax to digital curing, we dis-
cretized the candidate moves and made them finite by mak-
ing the arrival points of the stone correspond to grid points
in play area. In the discretized space, the branches of the
game tree, which are expanded due to uncertainty, can be
shared between different moves. Consequently, the compu-
tational complexity is saved and the efficiency is improved
by convolving with a known probability density function
rather than by repeating random simulation.

Game Tree Search

To apply the game tree search to curling, we first discretize
candidate moves. Before the random numbers were added,
the combination of the velocity and direction of the stone
uniquely corresponded to a certain arrival point. Therefore,
candidate moves can be represented by arrival points. The
number of arrival points inside the play area is 60 x 80 =
4,800. The points behind the play area are also included in
candidate moves. These candidate moves behind the play
area is for implementing strong shots that are intended to re-
move stones. The number of those arrival points is 60 x 70 =
4,200 whose intervals among points same as those inside
the play area. Thus the total number of candidate moves is
18,000 = (4,800 + 4,200) x 2. For the same arrival point,
there are two ways depending on whether the direction of
stone rotation is clockwise or counterclockwise.

In digital curling, each node of the game tree has a
stochastic bifurcation due to the uncertainty in state transi-
tions, and these nodes are called chance nodes. A simple
way to find the evaluation value of a chance node is re-
peating random simulations until the evaluation value con-
verges. However, that method takes too much time and re-
sults cannot be obtained within a realistic time. To reduce
the computational complexity, we adopt the method using
the probability distribution by the Billiard Al (Smith 2007;
Archibald, Altman, and Shoham 2009). In their method, the
expected value of a move can be calculated by simulation
without using random numbers.

The expected value of a shot to a certain arrival point
is obtained by referring to the value of a nearby point of
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Figure 4: An example of expected scores distribution for two
states.

that arrival point. In digital curling, the error between the
assumed arrival point and the actual arrival point follows a
predetermined distribution. For each arrival point, the eval-
uation value is calculated in advance by performing a simu-
lation without adding random numbers. The expected evalu-
ation value of the target point is obtained by convolving the
evaluation value of each arrival point with a certain proba-
bility distribution. The amount of calculation is reduced by
pre-calculating evaluation values that are repeatedly used in
convolution.

Evaluation Function

To apply the game tree search to find a better strategy in
curling, the evaluation function which evaluates the value of
the current state is required. The evaluation function maps
the current state to a scalar of the state’s value. Our evalua-
tion function mainly consists of two elements: the expected
scores distribution, and the game equity table.

Expected Scores Distribution In digital curling, as the
random values which follow a certain probability distribu-
tion are added to the velocity of the stone, the outcome of the
shot is not always as intended. Therefore, how many scores
the player gets at the end of an end also follows some proba-
bility distribution. We call this the expected scores distribu-
tion.

Game Equity Table If the player can predict the end score
appropriately, the decision-making process of the player in
each turn will be improved. For example, the state shown
left in Fig. 4 is superior in terms of the expected scores to
the right state in Fig. 4. However, the right state is better
than the left state when the team leads more than one point
or ties at the last end because at least one point is enough for
the team. In this way, the player can increase the winning
percentage by avoiding to lose scores instead of aiming high
scores.

To realize such decision-making process, the following
evaluation function E,,,, was designed as follows:

+8
Epn = Y yi x w(r,d, i), ()

i=—8

where y; is the i-th output of the neural network and
w(r, d, 1) is the winning percentage for the team which gets
1 points by d points differences with r ends remaining. The
matrix of the values of w(r, d, 7) is called ”Game Equity Ta-
ble” inspired by the technique used in the backgammon Al,
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Figure 5: An example of a games equity table.

Figure 6: Learning of other neural networks NN,..

and it is calculated based on a large number of self-plays in
advance.

The output of the neural network y; represents the prob-
ability to get ¢ points, and the set of y; for all ¢ represents
the expected scores distribution. By combining the expected
scores distribution and the winning percentage, the value of
the evaluation function F,,, becomes the expected winning
percentage.

Learning of Expected Scores Distribution

In this paper, we use a deep neural network as the model for
predicting the expected scores distribution from the game
states. Generally, the expected scores distribution, which we
want to predict by using neural networks, depends on which
move is chosen. For simplicity, we fix the policy to select
a move. The best policy is to take a move whose winning
rate is the largest; however, we generally cannot know which
move can provide the largest winning rate in advance. In-
stead, we decided to use policy such that the expected scores
are maximized throughout the experiment.

Input to the Model

The input of the neural network are the values that repre-
sent the information of each stone: the x and y coordinates
of the stone, the owner of the stone, whether the stone is in
the house or not, whether the stone is in play area or not, the
distance from the center of the house to the stone, whether
the opponent’s stone exists inside or not. Totally there are
seven values for each stone. The first five input features

are also used in the previous model (Yamamoto, Kato, and
lizuka 2018). The last two input features are newly intro-
duced by this paper for providing information about whether
the stones are involving scores or not more explicitly. The
closest stone to the tee, which is the center of house, is called
No. 1 stone and the ¢-th closest stone is called No. ¢ stone.
The input consists of stone information (7 per stone as men-
tioned above) arranged in order of distance from the center.
The outputs of the network are the probability distribution of
the score that the team gets at the end of end. There are 17
possible scores to get: the integer value from -8 to 8 where
the negative values represent the score which the opponent
team gets.

Learning Method

We use different models for different situations with re-
spect to how many shots remain. The model for the situa-
tion where x shots remain is called NN,. We train the NN,
in order of x = 1,z = 2,...,x = 15: the closer to the
end the situation is, the earlier the NN, for the situation is
trained. First, we train the neural network NN, that predicts
the expected scores distribution when 15 stones have already
delivered and only one shot remains. The score of end is
determined soon after the last shot is delivered from such
states, therefore NN can learn the expected scores distribu-
tion more precisely than other NN,..

Generating states as inputs The states used for training
of the models are created randomly. We aim to create states
that are more likely to occur in real games, and we con-
trol the variation of the number of stones in the play area.
In particular, we do not create states that have more than 4
stones from either team because it rarely happens. Because
the states in which the difference in the number of stones
between teams is large are less likely to happen, we control
the state creation in the way that the number of created states
is proportional to the difference in the number of stones be-
tween teams in the states. Especially, the number of data for
the states where there was no stone for both teams is very
small as all such states are the same. The symmetric states
of the randomly created states as described above are added
to the data set.The states for NN, where x is more than 1
are also generated as above. The number of states for NN
is 200, 000 and the number of states for NN, where x > 1
is 20, 000 for each in total.

In generating states, we put a stone in house or out of
house in the play area with a probability of 60% and 40%
respectively. In the ”in house” case, both x coordinate and y
coordinate of the stone follow the normal distribution with
the mean of the center of house and the standard deviation
is the half of house radius. In the “out of house” case, y
coordinate of the stone follows the uniform distribution.

Creating teaching signals First, we create the teaching
signal for the state where the last one shot remains because
soon after taking a shot from these states the score gets de-
termined. We take all discrete candidate moves without ran-
dom noise, then we calculate the expected scores for each
candidate move by convolving with a certain probability dis-
tribution. Consequently, we can roughly estimate the best



Figure 7: An example of a state generated using random
numbers as following. When placing a stone in house, it is
included in the green area. When placing a stone outside
house if the stone belongs to the first player, x coordinate
follows the normal distribution with the mean of % (W is
the width of the curling sheet) and the standard deviation is
% (represented by the red area). If the stone belongs to the
second player, x coordinate follows the normal distribution
with the mean of % or % (chosen with a probability 50%

respectively) and the standard deviation is % (represented
by the yellow area).

move to maximize the expected score. Then, we calculate
the expected scores distribution by repeating the estimated
best move 500 times. Second, as for states where more than
one shot remains, the expected scores distribution as a teach-
ing signal can be calculated by searching to the end of end.
However, it costs a lot of time to search. To reduce the com-
putational costs, we derive the teaching signal for NN, by
using the output of NN, _;. We create states where x — 1
shots remain by taking all discrete candidate moves without
random noise from states where x shots remain. After get-
ting the expected scores distribution as the output of NN, _;
for each candidate move, we again convolve the expected
scores distribution by NN, _; with a probability distribu-
tion over all candidate moves, and we obtain the expected
scores distribution for each move as candidates of the teach-
ing signal for NN,. From these candidates expected scores
distribution, we actually selected the distribution with the
maximum expected scores as the teaching signal for NN,.

Result

We conduct the experiment for NN; which is the model for
the states where the last one shot remaining. The learning
curve is shown in Fig. 8. The training and test error de-
creased, however, there is a gap between them. Actually, we
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Figure 8: The learning curve: the mean squared error is used
for the objective function. The orange curve is for test data
and the blue curve is for train data.

found that there are states for which our model’s prediction
is successful and unsuccessful in test data. Below, we show
the examples for these states. In these examples, the red team
is the first player and the yellow team is the second player.
Therefore, the last stone is delivered by the yellow team.

Figure 9 shows the example state which the model suc-
cessfully learned. In the situation shown in Fig. 9, the best
shot is such that the delivered stone hits and removes the red
stone in the center. Since no stone collides with the red stone
after the collision, the result is likely to be simple, and our
model successfully predicts the expected scores distribution
(Fig. 9 right). In such situations where the number of colli-
sions is small, the results are easy to predict because there
are few variations in the expected scores distribution as a
teaching signal.

Next, the example of the state learned unsuccessfully is
shown in Fig. 10. In the state, the predicted distribution
by our model is quite different from the distribution of the
teaching signal (Fig. 10 right). In this state, the best shot is
such that the delivered stone hits and removes two red stones
on the left side of the centerline in house at the same time.
By taking the best shot, the delivered stone collides more
than once. In such a situation, the variation of the result af-
ter the collision is diverse because the small difference in
the noise added to the initial velocity of the stone greatly
changes the collision result. Thus the situation after the col-
lisions is likely to be complicated and the prediction is diffi-
cult. These results show that there is room for improvement
in our model, especially for the situation where many colli-
sions should be considered.

Conclusion

To analyze curling strategies in digital curling, we created
the neural network model to learn the expected scores dis-
tribution used for the evaluation function in the game tree
search.

In future works, based on the results of this study, we will
consider other features as input features to correctly learn as-
pects that we found difficult to learn. As other ways for im-
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Figure 9: An example of a state successfully learned and the
teaching signal and output of NN; successfully learned
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Figure 10: An example of a state unsuccessfully learned
and the teaching signal and output of NN; unsuccessfully
learned

proving the model, we will increase the number of data and
change the structure by increasing or decreasing the num-
ber of hidden layers in a neural network. After improve the
accuracy of NNy, we will make NN, (x > 1).

We will also consider applying our model to analyze
strategies in real curing. There have been some team sports
analyses using machine learning. For example, Liu and
Schulte proposed the original metric called GIM for eval-
uating the ice hockey players’ performance. Their method is
based on the learned action values in reinforcement learn-
ing and realizes evaluation depending on the game context
(Liu and Schulte 2018). On the other hand, in our study, we
create the evaluation function for the game tree search. This
evaluation function consists of the expected scores distribu-
tion and the game equity table. By using the evaluation value
calculated as the expected winning rate for the situation, it
is possible to evaluate whether the shot aimed by the player
was good or bad. In addition, to analyze real curing strate-
gies, it is worth considering to evaluate with consideration
of the accuracy of the player’s shot.
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