
Interpretable Prediction of Goals in Soccer

Tom Decroos
KU Leuven, Department of Computer Science

tom.decroos@cs.kuleuven.be

Jesse Davis
KU Leuven, Department of Computer Science

jesse.davis@cs.kuleuven.be

Abstract

Valuing the actions a soccer player performs in a match is a
crucial problem in soccer analytics. While many approaches
have been proposed for this problem, a commonality among
them is the need to build a model that can predict for a given
game state the probability of a goal occurring in the near
future. Often these works have two common shortcomings.
First, the predictive models are often not thoroughly evalu-
ated or may even be evaluated according to the wrong per-
formance metric. Second, there is a tendency to sacrifice in-
terpretability for performance. Hence, the models often yield
no insight into why a given game state has a higher or lower
probability of resulting in a goal. This paper analyzes VAEP, a
recently proposed approach for valuing actions, and its model
for estimating the probability of scoring in the near future. We
discuss a number of design choices related to building this
model and share insights on how to properly evaluate it. Fi-
nally, we replace VAEP’s complicated non-interpretable gra-
dient boosting tree model that uses 151 features with a sim-
pler interpretable Generalized Additive Model (GAM) using
only 10 features. We find that the GAM offers nearly identical
performance to the more complicated gradient boost model
while being interpretable and offering insights into what char-
acteristics of a game state have an effect on the probability of
scoring a goal in the near future.

Introduction
Objectively assessing how valuable an action in a soccer
match is, is a crucial task in soccer analytics that has appli-
cations in scouting, player acquisition, and tactical analysis.
Initial metrics such as expected goals (xG) (IJtsma 2015)
and expected assists (xA) (Worville 2017) take a probabilis-
tic approach to valuing the actions: xG estimates the prob-
ability that a shot will result in a goal and xA estimates the
probability that a pass will become a goal assist. Unfortu-
nately, these metrics focus on relatively rare actions within
a match.

More recently, approaches like VAEP (Decroos et al.
2019), XG Chain (Lawrence 2018), xG Added (Mackay
2017), xG Threat (Singh 2019), and Attacking Contribu-
tion (Yam 2019) have attempted to assess a wider variety
of on-the-ball actions in a match. These approaches give a

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more complete overview of a player’s contribution by valu-
ing frequent actions such as (non-assist) passes, dribbles,
and tackles. While there are important differences among
these techniques, at a high level they all value actions by ex-
ploiting the intuition that an action changes the game state.
Then, they value each action by looking at the difference
in a team’s chance of generating a goal scoring opportunity
before and after the action. Therefore, the key artificial in-
telligence task is to estimate a team’s probability of scoring
in the near future from a given game state.

Some techniques, such as expected threat (xT) (Singh
2019) derive this change in probability solely by valuing
individual locations on the pitch. Ignoring relevant informa-
tion such as the action used to progress the ball and the game
context (e.g., score difference and time remaining) allows xT
to give intuitive insights into why certain actions are useful.
Simply stated, good actions move the ball to a location on
the pitch where a team is more likely to generate a goal-
scoring attempt. In contrast, other approaches such as VAEP
use a rich feature set to describe the current game state and
complex black-box models like ensembles of decision trees
to estimate probabilities. A shortcoming is then that there is
no intuitive explanation about why a given action altered a
team’s chance of scoring.

This paper examines VAEP in greater detail in hopes of
gaining insights into how it assesses changes in the prob-
ability of a team scoring. The original paper used a gradi-
ent boosting model with over 150 features which is not in-
terpretable. We replace the gradient boosting model with a
Generalized Additive Model (GAM) using only 10 features.
We find that the GAM offers nearly identical performance to
the more complicated gradient boosting model while being
interpretable and offering insights into what characteristics
of an action alter a team’s probability of scoring.

VAEP: Valuing actions by estimating
probabilities

This paper analyzes the VAEP framework (Decroos et al.
2019). We briefly summarize the approach here. Like other
approaches, VAEP exploits the fact that each action alters
the game state. That is, an action ai moves the match from
game state Si−1 to game state Si. The value of ai for team t

is then the difference in value between Si and Si−1:

V (ai, t) = V (Si, t)− V (Si−1, t)

where t is the team the value is computed for. When con-
sidering how valuable a game state is, VAEP leverages the
intuition that a game state is valuable for team t if it offers
(1) a high short-term probability of team t scoring; and/or (2)
a low short-term probability of team t conceding. Therefore,
VAEP values each game state according to the formula:

V (S, t) = Pscores(S, t)− Pconcedes(S, t).

Hence a game state is positively valued if a team’s short-term
chance of scoring is higher than conceding and negatively
valued if the opposite is true.

Conceptually, VAEP transforms the subjective task of
valuing an action to the objective machine learning task of
estimating the probabilities of future events (in this case
scored and conceded goals). The machine learning task can
then be summarized as follows:
Given: Game state Si and team t.
Predict: Pscores(Si, t) and Pconcedes(Si, t), the probabil-

ities of team t scoring and conceding in the short-term
future of game state Si.

We can build a predictive model by training a probabilistic
classifier on a set of features and labels. In the next section,
we discuss the design choices that come up when building
this model.

Building a predictive model for goals
To build a predictive model that can estimate the short-term
probability of scoring and conceding from a game state, we
require three ingredients: (a) features that describe the game
state, (b) labels that capture the limited temporal influence
that the current game state will have on the match’s evolu-
tion, and (c) a probabilistic classifier that can learn the prob-
abilistic mapping from the features to the labels.

Features
Constructing the right features is a crucial step in the pro-
cess of valuing game states. By selecting and engineering
specific features that accurately describe the pertinent as-
pects of the game state, we can increase the performance
of the predictive model. It also accords the modeler the abil-
ity to decide which aspects of the game state to analyze and
which aspects to ignore. For example, xT (Singh 2019) dis-
cretizes the pitch into zones and only uses the zone where
the current action occurred to describe the game state. Ignor-
ing the other aspects of the game state is a conscious choice
that makes modeling simpler. Moreover, it makes the model
much more understandable to humans. However, this choice
may come at the expense of maximizing performance.

On the other hand, VAEP attempts to make the predic-
tive model as performant as possible and therefore uses a
rich set of features to describe a game state. More specifi-
cally, VAEP considers the following three types of features
per game state.

Simple features VAEP describes a game state Si by its
three most recent actions [ai, ai−1, ai−2]. To describe an
action, Decroos et al. introduced the SPADL format for
event stream data, which describes an action by the fol-
lowing eight attributes: type, player, team, result, body-
part, time, start location, and end location. All these at-
tributes (except player and team) of the past three actions
are used as features to describe the game state Si.

Complex features The complex features combine infor-
mation within an action and across consecutive actions.
Within each action, these features include (1) the distance
and angle to the goal for both the action’s start and end
locations, and (2) the distance covered during the action
in both the x and y directions. Decroos et al. also com-
pute the distance and elapsed time between consecutive
actions and whether the ball changed possession. These
features provide some intuition about the current speed of
play.

Game context features The game context features are (1)
the number of goals scored in the game by the team pos-
sessing the ball after action ai, (2) the number of goals
scored in the game by the defending team after action
ai, and (3) the goal difference after action ai. Decroos et
al. include these features because teams often adapt their
playing style to the current scoreline (e.g., a team that is
1-0 ahead will play more defensively than a team that is
0-1 behind) (Robberechts, Van Haaren, and Davis 2019).

By considering all the described above features and one-
hot encoding the categorical variables, Decroos et al. used
151 features in total to describe a game state (Decroos et al.
2019).

Labels
By assigning labels to game states, we answer the following
question:

How responsible is a game state for a goal scored or
conceded in the near future?”

If a goal occurs in the subsequent game state, then obvi-
ously the current game state should receive a lot of credit.
However, if the goal happens ten minutes after the current
game state, then the current game state likely had no role in
leading to the goal. The challenge is to assign a label for the
game state that falls between these two more extreme cases.
To estimate Pscores(Si, t), Decroos et al. assign game state
Si a positive label (= 1) if team t scored a goal in the sub-
sequent 10 actions, and a negative label (= 0) in all other
cases (Decroos et al. 2019). The same approach is used to
assign labels to estimate Pconcedes(Si, t). Choosing to look
ahead 10 actions into the future to determine whether a game
state affected the occurrence of a scored or conceded goal,
is a parameter of the approach and can be altered depending
on the preferences of the end user.

Probabilistic Classifiers
To estimate scoring probabilities, we need a probabilistic
classifier that can predict the labels from the features. We

discuss two popular models, logistic regression and XG-
Boost, and one lesser known model, the generalized additive
model.

Logistic regression Logistic regression is a statistical
model that uses a logistic function to model a binary tar-
get variable that depends on the input features (Pedregosa,
Varoquaux, and others 2011). Given an input feature vec-
tor x = [x1, x2, . . . , xm] and a target variable y, logistic
regression will learn the following function:

g(E[y]) = α0+α1x1+α2x2+. . .+αmxm = α0+

m∑
i

αixi

where g is the logit link function and the weights αi are
learned from the training data. This formula illustrates
how logistic regression is a linear model. It is also inter-
pretable, as the sign of αi shows whether there is a posi-
tive or negative correlation between feature xi and y and
the magnitude of αi hints how big its impact is.

XGBoost XGBoost is a popular gradient boosting decision
trees model that solves many data science problems in
a fast and accurate way (Chen and Guestrin 2016). Due
to its excellent performance, it has become the de facto
standard model of choice for many data science practi-
tioners when classifying tabular data. One of the reasons
XGBoost works so well out of the box is that by using de-
cision trees and the boosting mechanism, it can learn com-
plex non-linear decision boundaries. This is why a gradi-
ent boosting decision tree model was the chosen model in
the original VAEP paper (Decroos et al. 2019). The down-
side is that these complex non-linear decision boundaries
are often too complex for humans to grasp and thus XG-
Boost is in practice a black box model.

Generalized additive model Generalized additive models
(GAMs) are statistical models that model the target vari-
able as a sum of univariate functions (Hastie 2017). Stan-
dard GAMs have the form

g(E[y]) = f1(x1)+f2(x2)+ . . .+fm(xm) =

m∑
i

fi(xi)

where g is the logit link function and the functions fi are
learned from the training data. This model is interpretable
in the sense that users can visualize the relationship be-
tween the univariate terms of the GAM and the dependent
variable through a plot fi(xi) vs. xi. The formula illus-
trates how GAMs are a more powerful generalization of
logistic regression models, replacing the linear functions
αixi with more complex non-linear functions fi(xi).

One of the reasons why GAMs have been less popular
up until now is lack of a mature and widely available im-
plementation. However, Microsoft recently released Inter-
pretML (Nori et al. 2019), an open-source Python package
which exposes interpretable machine learning algorithms to
practitioners and researchers. One of the contributions in
InterpretML is the first implementation of the Explainable
Boosting Machine (EBM). EBM is an implementation of a
GAM that uses a boosting mechanism to learn the univariate

functions and can also model the most important pairwise
interactions among features. EBM is interpretable, yet can
be nearly as accurate as many blackbox models such as XG-
Boost.

Evaluating a predictive model for goals
When building a predictive model, two underappreciated as-
pects in soccer analytics are (1) evaluating the performance
of the predictive model, and (2) choosing the correct evalu-
ation metric. In this section, we first identify shortcomings
in recent works of various soccer analytics researchers. We
discuss AUROC, Brier score, and logarithmic loss, the three
most popular metrics for evaluating probabilistic classifiers.
We offer some insights on when to use each metric and fi-
nally propose a small modification to the Brier score and
logarithmic loss so that they become more interpretable.

Shortcomings in recent work
Often, articles do not provide a detailed description of both
the methodology employed in the evaluation and the re-
sults themselves. Fernandez et al. introduced an Expected-
Possession-Value-model for soccer that is composed of mul-
tiple smaller models that estimate the likelihood of future
events such as goals or passes (Fernández, Bornn, and Cer-
vone 2019). The paper mentions that they rigorously eval-
uated and tuned their models to obtain maximal perfor-
mance. However, further details on how accurate the mod-
els were or which evaluation metric was used were omit-
ted for the sake of brevity, which is detrimental to the re-
producibility of their results. Similarly, Decroos et al. pre-
dict the likelihood of a goal occurring from a phase us-
ing a Dynamic Time Warping-based model, but do not re-
port the performance of the model or the evaluation met-
ric used to set its parameters (Decroos et al. 2017b). Many
more soccer analytics articles exist where information on the
evaluation approach is missing (IJtsma 2015; Singh 2019;
Lawrence 2018; Mackay 2017).

Other articles do provide details on how the models were
evaluated, but actually use the wrong evaluation metric. For
example, Pappalardo et al. build a model that predicts the
probability of a team winning a match based on some fea-
tures describing the team and evaluate this model with AU-
ROC (Pappalardo, Cintia, and others 2018). The predictive
model is then used to assign weights to its features in a dif-
ferent use case, namely valuing players. Given this use case,
it is important that the predictive model is well calibrated.
However, AUROC is an evaluation metric that is agnostic to
calibration. Another example is Decroos et al. who build a
model to predict highlights in soccer matches (Decroos et
al. 2017a). One of the components in this model is an ex-
pected goals model that predicts goals from shots. Decroos
et al. used AUROC to evaluate their expected goals model.
However, given how the output of their predictive model is
used, they should have used logarithmic loss instead, as we
will argue further in this section.

Finally, Lucey et al. also build models that predict goals
from shots and use mean absolute error (MAE) to evalu-
ate the performance of their predictive models (Lucey et al.

2014). However, mean absolute error is not a proper scor-
ing rule. What this means is that a predictive model that is
evaluated on mean absolute error can get better results by
reporting probabilities of 100% or 0%, depending on which
is closer to the real probability. The predictive model is in-
centivized to lie rather than report the true class distribu-
tion (Gneiting and Raftery 2007).

Luckily, there also exist articles where the evaluation ap-
proach is mentioned, motivated, and quantitative results are
provided (Eastwood 2015; Decroos et al. 2019; Mackay
2017).

Evaluation metrics
There exist three popular metrics to evaluate probabilistic
classifiers: area under the ROC curve (AUROC), Brier score
and logarithmic loss.

AUROC The area under the receiver operator curve (AU-
ROC) evaluates how well a classifier can differentiate pos-
itive examples from negative examples. Intuitively, AU-
ROC answers the following question: ”Given a positive
example and a negative example, how likely is it that our
classifier will correctly rank the positive example ahead
of the negative example”. Note that even random guess-
ing will achieve a AUROC of 50%. This presents a naive
baseline any probabilistic classifier should always beat.
One crucial aspect of AUROC that often goes ignored is
that it is in essence a ranking metric. AUROC only consid-
ers the relative ranking of examples and ignores the actual
predicted probabilities. This means that a classifier can be
poorly calibrated, yet still achieve great AUROC.

Brier score The Brier score (BS) is a proper scoring rule
that measures the accuracy of probabilistic predictions. A
proper scoring rule is a metric that can only be minimized
by reporting the true class distribution. It is essentially the
mean squared error between the predictions and the labels
and has the following formula:

BS =
1

N

N∑
i

(pi − yi)2

in which N is the number of examples, pi is the probabil-
ity that was predicted for example i and yi is the label of
example i.

Logarithmic loss The logarithmic loss (LL) is also a proper
scoring rule that measures the accuracy of probabilistic
predictions. The biggest difference with Brier score lies in
the way that it weighs individual prediction errors. Loga-
rithmic loss has strong foundations in information theory
and its formula is:

LL =
1

N

N∑
i

yi log pi + (1− yi) log(1− pi)

.

When to use which evaluation metric
As previously discussed, a common shortcoming in soccer
analytics research is building predictive models by optimiz-

ing and evaluating on one of the above metrics without criti-
cal thought on why to use a specific evaluation metric (Pap-
palardo, Cintia, and others 2018; Decroos et al. 2017a;
Lucey et al. 2014). Our key message is that the choice of
evaluation metric should depend on the specific use case in
which the predictive model will be used. In other words,
once you have a predictive model that outputs probabilities,
what will you do with these probabilities? We now discuss
our insights on when each metric is applicable.

Choosing whether or not to use AUROC is the easiest
choice. AUROC is the best metric for classification tasks or
ranking examples based on how likely they are to be posi-
tive or negative. For example, when searching for the top-k
game states that are most likely to result in a goal.

When we care about using the actual values of the prob-
abilities, the choice is between the Brier score and logarith-
mic loss as AUROC is not suitable. Unfortunately, it is less
clear when one should use the Brier score versus logarithimc
loss. Brier score and logarithmic loss are similar in the sense
that they are both proper scoring rules and can both only
be minimized by reducing the individual prediction errors.
However, they differ in how they aggregate the individual
prediction errors.

To illustrate this difference and to more easily compare
the two metrics, let ei = |pi − yi| be the prediction error for
example i. Using this definition and the multiplication rule
for logarithms, we can simplify the formulas for the Brier
score and logarithmic loss to:

BS =
1

N

N∑
i

e2i

and

LL =
1

N

N∑
i

log(1− ei) =
1

N
log(

N∏
i

1− ei).

This rewrite illustrates that the Brier score is simply the
mean squared error. Moreover, the Brier score combines in-
dividual prediction errors by summing them while the loga-
rithmic loss combines individual prediction errors by multi-
plying them.

This insight is the reason we recommend to use Brier
score to build a predictive model if the resulting probabil-
ities will be summed or subtracted. For example, (Decroos
et al. 2019) construct player ratings by summing the deltas
between game state probabilities. We recommend to use log-
arithmic loss if the resulting probabilities from the predictive
model are more likely to be used in multiplications, such as
in (Decroos et al. 2017a) and (Fernández, Bornn, and Cer-
vone 2019), where the resulting probabilities are multiplied
with the probabilities of predictive models of other tasks.
Other use cases where probabilities are often used in multi-
plications are simulations, reinforcement learning, and rec-
ommender systems.

In summary, which evaluation metric to use depends on
what the probabilities outputted by the predictive model will
be used for. We recommend to use AUROC when ranking
probabilities or classifying examples, Brier score when sum-
ming or subtracting probabilities, and log loss when multi-
plying or dividing probabilities.

Making Brier score and logarithmic loss more
interpretable
A downside to both Brier score (BS) and logarithmic loss
(LL) is that their values are less interpretable than AUROC.
Regardless of the class skew, an AUROC of 0.5 corresponds
to random guessing. Moreover, the AUROC is the Wilcox-
Mann-Whitney statistic, which is the probability that the
model ranks a randomly selected positive example ahead of
a randomly selected negative example. In contrast, how good
or bad a specific BS or LL value is depends on the class dis-
tribution. A Brier score of 0.1 is impressive in a data set
with a 50/50 class distribution, but terrible in a data set with
a 99/1 class distribution.

To somewhat combat this lack of interpretability, we can
compare the BS or LL of our predictive model to that of
a simple baseline, namely always predicting the class dis-
tribution. For example, in a data set with only 1% positive
examples, we always predict 0.01 as the chance of example
i being positive. In our experience, this can be a surprisingly
hard baseline to beat in some use cases.

To properly compare our model’s BS/LL, we divide it by
the BS/LL of our baseline. This number will be a value be-
tween 0 and infinity. A value of 0 means that this classifier
offers perfect (and thus deterministic) predictions. A value
between 0 and 1 means that this classifier offers better pre-
dictions than the naive baseline, and a value higher than 1
means that the model is worse than the naive baseline and
practically useless, similar to a classifier with a AUROC of
< 50%. We call these metrics the normalized Brier score
(NBS) and normalized logarithmic loss (NLL).

NBS =
BS

BSbaseline
, NLL =

LL

LLbaseline

Experiments: Predicting the probability of
scoring in the 2018/19 Premier League

The goal of the experiments is to understand the effect of the
interplay between

1. the complexity of the feature set used to describe the game
state; and

2. the selected probabilistic classifier used to estimate scor-
ing probabilities for each game state.

Our hope is that we can approximate the performance of the
original VAEP model (Decroos et al. 2019), which used 151
features and an uninterpretable gradient boosted tree model
by applying a more interpretable model to a much smaller
feature set.

Approaches considered
We consider the following three sets of features:

Location only This considers only the (x, y)-coordinates
of the last action in game state Si. Hence, each game state
is described by two features.

VAEP This considers the set of 151 features used in the
original VAEP model.

Top-10 This considers the 10 most important features from
VAEP feature set. These features were selected using the
built-in ordering of feature importance available in the im-
plementations of the XGBoost and GAM models.
For each of the three feature sets, we train a logistic re-

gression, XGBoost and GAM model.

Methodology
Our data set consists of event stream data of 760 matches
from seasons 2017/18 and 2018/19 of the English Pre-
mier League. The data was provided to us by StatsBomb
and then converted to the SPADL format using the freely
available converter at https://github.com/ML-KULeuven/
socceraction.

We trained all three classifiers on 747,813 game states
in the 2017/18 Premier League season and evaluated them
using the Normalized Brier Score (NBS) on 789,108 game
states in the 2018/19 Premier League season.

For all three classifiers, we performed no tuning and set
all parameters to the default values of their respective imple-
mentations.123 Some examples of these default parameters
are logistic regression using the L2 regularization penalty
and L-BFGS as the optimization problem solver, XGBoost
using 100 trees of maximum depth 6, and the GAM using 16
estimators to construct each univariate function. The only
exception is that we allowed the GAM to learn three pair-
wise interaction terms rather than its default value of zero.
This parameter was changed to leverage the capabilities of
the underlying implementation of the GAM.

Results
Table 1 reports the normalized Brier scores for each
classifier-feature set combination. From these results, we
can infer the following conclusions:
Only considering location is insufficient. As can be seen

in the first row of Table 1, logistic regression achieves an
NBS of 98.4%, while both XGBoost and GAMs achieve
a NBS of 96.4%. These scores only slightly improve
upon the baseline. Furthermore, regardless of the learn-
ing method, only using the location does not come close
to matching the performance of using a more expansive
and expressive feature set.

Having a model that captures non-linearities helps.
Regardless of the feature set, XGBoost and GAMs offer
substantial improvements on predictive performance
compared to using logistic regression. For the location
only feature set, Figure 1 clearly demonstrates how
GAMs are capable of capturing non-linear correlations
between the features and the target variable, while
Logistic Regression is not.

A small feature set can yield excellent performance.
Compared to seeing the full set of 151 features (second
row in Table 1), using the top 10 features only slightly
1https://scikit-learn.org/stable/modules/generated/

sklearn.linear model.LogisticRegression.html
2https://github.com/dmlc/xgboost
3https://github.com/interpretml/interpret

Features Classifier

LogReg XGBoost GAMs

Location only 98.6% 96.4% 96.4%
VAEP 89.5% 85.6% 85.8%
Top-10 91.2% 86.0% 86.1%

Table 1: Normalized Brier score (lower is better) of three
different feature sets using three different probabilistic clas-
sifiers: logistic regression (LogReg), XGBoost, and general-
ized additive models (GAMs).

(a) (b)

Figure 1: A generalized additive model (GAM) consisting of
two univariate models using (a) the x-coordinate and (b) the
y-coordinate of a game state. The GAM predicts the proba-
bility of scoring a goal from a given x, y-location by sum-
ming the scores of the univariate models per feature and con-
verting the resulting sum to a probabilityP ∈ [0, 1] using the
logit linking function. The straight orange line represents the
weight given to the feature by a Logistic Regression model
(LogReg) and illustrates the difference in predictive power.

decreases performance (third row in Table 1). However,
using fewer features highly enhance the interpretability
of these models. The performance of the GAM (86.1%
NBS) is again similar to the performance of XGBoost
(86.0% NBS).

In summary, regardless of the feature set GAMs achieve
a performance that is better than Logistic Regression and
similar to that of XGBoost, while remaining interpretable.

Discussion of top-10 features
Figure 2 details the ten univariate functions that make up
the GAM that almost matches XGBoost’s performance and
provides some insights in what makes a game state (and an
action) likely to result in a scored goal. The figure also in-
cludes the scores of an example game state to illustrate how
a GAM can be used to understand the reasoning behind in-
dividual predictions.

Panels (a-c) capture location-based aspects of the game
state. In Panel (a), we see that as the ball gets closer and
closer to the center of the opponent’s goal, the chances
of scoring increase. This correlation increases dramatically
when the ball is very close to the center of the goal. In Panel

(b), we can see that being aligned to the center of the goal
slightly increases in the chance of scoring whereas being at a
tight angle decreases it. This makes sense, as a shooter likely
has more places to aim when positioned in front of the goal.
Finally, Panel (c) shows that when the ball enters the final
third, there is a strong positive correlation with scoring. This
increases as the ball gets closer to the endline behind the
opponents goal, but not as dramatically as in Panel (a).

Panels (d-f) capture contextual aspects of the game state.
Panel (d) shows how the probability of scoring is dramat-
ically reduced if the last action was not successful. This
makes sense, as in the SPADL representation an action not
being successful means that the team has lost possession of
the ball and therefore cannot attempt to score without first
regaining possession.

Panel (e) shows an even stronger impact on goal scoring
probability if the last action was a foul. The effect captured
here is that while there might still be a slim chance that a
team can quickly recover the ball following an unsuccessful
action, this becomes virtually impossible if the team com-
mitted a foul. The reason is that after a foul the game tem-
porarily suspends and is no longer in open play. This allows
the players of the opposing team who are now in possession
of the ball enough time to position themselves such that they
obtain the maximum tactical advantage.

Panel (f) shows that the probability of scoring varies based
on the score difference, with teams leading by ≥ 2 being
more likely to score. Robberechts et al. showed that the
probability of scoring a goal changes with the goalscore dif-
ference (Robberechts, Van Haaren, and Davis 2019). How-
ever, we currently are unsure of whether this is a causal ef-
fect (i.e., being three goals ahead or tree goals behind has an
effect on the mental state of a player, making them perform
better or worse actions (Bransen et al. 2019)) or whether this
is simply a correlation (i.e., a team that is three goals ahead
in a match is a good team with an above average finishing
rate, therefore its games states are more valuable). Research-
ing this further is an interesting direction for future work.

Panels (g-j) capture aspects about the speed of play. On
Panels (g-i) as the values on the x-axis increase, it indicates
that the ball is moving longer distances and hence getting
closer and closer to your opponent’s goal. In Panel (j), as
the value on the x-axis decreases, this indicates that there is
less time between consecutive actions. This may be a proxy
for the ball moving more rapidly. Hence, in combination,
these last four features hint towards the speed of play during
the game state. This can be an important factor to decide
goal-scoring probability, i.e., the odds of scoring are usually
higher during a quick counter-attack than during slow build-
up play.

For each of the three location-based features in Panels (a-
c), the GAM also learns a pairwise interaction term where
it combines each feature with the successfulness of the ac-
tion in Panel (d). These interaction terms help fine-tune the
performance of the GAM for specific examples, but are
also more challenging to interpret than the simple univari-
ate functions in Figure 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) Example game state

Figure 2: Univariate functions of the ten features (a-j) that make up the GAM that predicts the short-term goal-scoring prob-
ability from a given game state. The red dots denote the scores of an example game state (k) with a short-term goal-scoring
probability of 4.9%. This goal-scoring probability is computed using the formula g−1(

∑m
i fi(xi)) where fi(xi) are the scores

in Panels (a-j) and g−1 is the inverse logit function. The two features that have the biggest positive impact on the goal-scoring
probability of the example game state are (a) the small distance to the goal and (c) the high X-coordinate. The feature with the
biggest negative impact is (b) the bad angle to the goal.

Conclusion
Assessing how valuable an action in a soccer match is, is a
crucial task in soccer analytics. VAEP is a framework that
addresses this task by solving a probabilistic classification
problem: given a game state, predict the probability of a
goal being scored or conceded in the near future. We have
discussed a number of design choices related to this classi-
fication problem such as the choice of features, labels, and
classifier. When building a model to predict goals, earlier
work often has two shortcomings. The first shortcoming is
that the performance of the predictive model is often not
thoroughly or wrongly evaluated. We discussed the occur-
rence of this shortcoming in recent related work and showed
how to combat this by sharing insights on when to use which
evaluation metric.

The second shortcoming is that the predictive models use
a complicated classifier such as XGBoost that offers no in-
tuitive explanations on why a given game state produced a
higher or lower chance of scoring. To address this shortcom-
ing, we replaced the complicated non-interpretable gradient
boosting tree model using 151 features from the original
VAEP paper (Decroos et al. 2019) with a Generalized Ad-
ditive Model (GAM) using only 10 features. We illustrated
how the GAM can get close to the performance of XGBoost
while remaining interpretable. Given how crucial the inter-
pretability of models can be in soccer analytics, GAMs may
be a better choice than XGBoost to build predictive models
with, even if their performance is slightly worse.

Acknowledgements
Tom Deroos is supported by the Research Foundation-
Flanders (FWO-Vlaanderen). Jesse Davis is partially sup-
ported by the EU Interreg VA project Nano4Sports, the
KU Leuven Research Fund (C14/17/07) and the Research
Foundation-Flanders under EOS No. 30992574. Thanks to
StatsBomb for providing the data used in this paper.

References
Bransen, L.; Robberechts, P.; Van Haaren, J.; and Davis, J.
2019. Choke or Shine? Quantifying Soccer Players’ Abili-
ties to Perform Under Mental Pressure. In MIT Sloan Sports
Analytics Conference.
Chen, T., and Guestrin, C. 2016. XGBoost: A Scalable
Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 785–794. ACM.
Decroos, T.; Dzyuba, V.; Van Haaren, J.; and Davis, J.
2017a. Predicting Soccer Highlights from Spatio-Temporal
Match Event Streams. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, 1302–1308.
Decroos, T.; Van Haaren, J.; Dzyuba, V.; and Davis, J.
2017b. STARSS: A Spatio-temporal Action Rating System
for Soccer. In ECML/PKDD 2017 Workshop on Machine
Learning and Data Mining for Sports Analytics.

Decroos, T.; Bransen, L.; Van Haaren, J.; and Davis, J. 2019.
Actions speak louder than goals: Valuing player actions in
soccer. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery; Data Mining,
KDD ’19, 1851–1861. New York, NY, USA: ACM.
Eastwood, M. 2015. Expected Goals And Support Vector
Machines. pena.lt/y.
Fernández, J.; Bornn, L.; and Cervone, D. 2019. Decom-
posing the Immeasurable Sport: A Deep Learning Expected
Possession Value Framework for Soccer. In MIT Sloan
Sports Analytics Conference.
Gneiting, T., and Raftery, A. E. 2007. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
Statistical Association 102(477):359–378.
Hastie, T. J. 2017. Generalized additive models. In Statisti-
cal models in S. Routledge. 249–307.
IJtsma, S. 2015. A Close Look at My New Expected Goals
Model. 11tegen11.
Lawrence, T. 2018. Introducing xGChain and xGBuildup.
StatsBomb IQ Services.
Lucey, P.; Bialkowski, A.; Monfort, M.; Carr, P.; and
Matthews, I. 2014. Quality vs. Quantity: Improved Shot Pre-
diction in Soccer Using Strategic Features from Spatiotem-
poral Data. In MIT Sloan Sports Analytics Conference.
Mackay, N. 2017. Predicting Goal Probabilities for Posses-
sions in Football. Master’s thesis, Vrije Universiteit Ams-
terdam.
Nori, H.; Jenkins, S.; Koch, P.; and Caruana, R. 2019. In-
terpretml: A unified framework for machine learning inter-
pretability.
Pappalardo, L.; Cintia, P.; et al. 2018. Playerank: data-
driven performance evaluation and player ranking in soc-
cer via a machine learning approach. arXiv preprint
arXiv:1802.04987.
Pedregosa, F.; Varoquaux, G.; et al. 2011. scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Re-
search 12(Oct):2825–2830.
Robberechts, P.; Van Haaren, J.; and Davis, J. 2019. Who
will win it? an in-game win probability model for football.
arXiv preprint arXiv:1906.05029.
Singh, K. 2019. Introducing Expected Threat (xT).
Worville, T. 2017. Expected assists in context.
Yam, D. 2019. Attacking Contributions: Markov Models for
Football.

