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Abstract

Many recent papers have proposed advanced machine learn-
ing methods to compute the expected impact of player ac-
tions. These values, however, are rarely specific to individ-
ual players, and thus fail to model a player’s influence on
action outcomes. To overcome this limitation, we generate
a contextualized representation for each player by a model
proposed in this paper: Variational Hierarchical Encoder with
Recurrence (VHER). VHER generates a latent player repre-
sentation to predict which player is currently acting given the
match context (current observation and game history). The
encoder constructs a context-specific shared prior over player
representations, which induces a shrinkage effect for the pos-
terior representations. A player embedding is generated by
sampling from the player’s posterior distribution. To validate
our VHER, we use the learned player embedding for down-
stream prediction tasks. Experimental results show the lead-
ing performance of VHER in the task of (1) identifying the
acting player and (2) predicting the player’s expected goals.

Introduction
With the advancement of high-frequency optical tracking
and object detection systems, more and larger event stream
datasets for sports matches have become available. There is
an increasing opportunity for applying advanced machine
learning to model the complex sports dynamics. Many re-
cent works (Liu and Schulte 2018; Decroos et al. 2019;
Fernández et al. 2019) have proposed to estimate the ex-
pected team success following a player’s actions. These ex-
pected values support many downstream applications, such
as predicting game outcomes or evaluating player perfor-
mance. However, when estimating the expected values, pre-
vious works often overlook the player-specific features (e.g.
scoring ability) and assign the same values to actions per-
formed by different players. Neglecting differences among
individual players compromises the model performance.

Some previous works have explored the approach to in-
corporating player information into modeling. Probably the
most straightforward approach is to apply a one-hot vec-
tor recording the player identity (pid) and train the neural
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Figure 1: An example of our contextualized player representation,
from which we sample the player embeddings.

model to dynamically learn the correlations between pids
and game context (Le et al. 2017). Despite its simplicity,
the one-hot representation is not informative enough for a
neural network to adequately model the correlation between
individuals and success. As evidence, our experiment shows
very limited improvement when we directly complement the
input space with pids. A recent work (Ganguly and Frank
2018) proposed to learn player embeddings by training a
neural network encoder to perform a secondary prediction
task: given the current game context, predict the pids of all
on-court players. They extracted the middle layer from the
trained encoder and used it as a player embedding to facili-
tate the training of other primary tasks. However, the predic-
tive accuracy on the secondary task was low. A problem with
training a neural net as a deterministic regression model is
that the player presence has a multi-modal distribution with
several almost equally likely outcomes. A strength of varia-
tional auto-encoders is that they produce a distribution over
outcomes that accommodates multiple modes.

To overcome the limitation, in this work, we build a
Variational Hierarchical Encoder with Recurrence (VHER).
VHER combines a Bayesian hierarchical model (Kruschke
2014) and variational inference to embed the player informa-
tion in latent variables under different game contexts. The
hierarchical model is trained to identify the acting player,
where we sample some latent variables from a context-
specific prior and compute N (the number of players)
Bernoulli distributions to model the presence of each player.
The Bernoulli parameters are then normalized for a categori-
cal distribution to predict the current on-the-puck player. We



then apply variational inference to learn the model param-
eters. Compared to Monte Carlo Markov Chain (MCMC)
and grid approximation, variational inference can general-
ize well to complex parameter spaces and significantly re-
duce the learning time under neural network implementa-
tion (Blei, Kucukelbir, and McAuliffe 2016). During the
inference, the posteriors for each player are encouraged to
shrink toward the mode of the context-specific prior, which
substantially reduces the training variance. This shrinkage
effect in our hierarchical model naturally formalizes the idea
that “similar players appear in a similar context”. We also
apply the posterior distribution for each player to predict the
current on-the-puck player, which encourages the diversity
of the posterior player representations. To demonstrate the
effectiveness of our player embedding, we apply them to the
secondary (embedding) task of identifying the acting player
and the external validation task of predicting the expected
goal. Experimental results show the improvement of model
performance with our player embedding.

Related Works
In this section, we introduce the previous works that are
most related to our model.

Variational Auto-Encoder
Variational Auto-Encoder (VAE) has achieved promising
performance in recovering multimodal distributions and in
generating many kinds of complicated data, including hand-
writing, faces (Kingma and Welling 2013), images (Gregor
et al. 2015) and player actions (Mehrasa et al. 2019). VAE
applies a set of latent variables z to capture the variations
of observed variables o. During the generative process, the
prior of z is generally chosen to be a simple Gaussian dis-
tribution. VAE models the likelihood function p(o|z) with
a decoder (usually implemented as a Gaussian or Bernoulli
Multi-Layer Perceptron (MLP) (Kingma and Welling 2013),
which applies a highly non-linear mapping from z to o.

The non-linearity in complicated likelihood function
p(o|z) leads to the intractable inference of the posterior
p(z|o). Instead, VAE approximates the true posterior with
a recognition model (decoder) q(z|o), which is usually de-
fined as a Gaussian as z ∼ N [µ, diag(σ2)] (µ and σ are
computed with observed variables o). Parameters of both
decoder and encoder are optimized by maximizing a lower
bound of the marginal likelihood of observation p(x) :

L(p(o)) = −KL(q(z|o)||p(z)) + Eq(z|o)

[
log p(o|z)

]
(1)

(Kingma and Welling 2013) introduced an alternative
method for generating samples from q(z|pl) and described a
reparameterizing trick for VAE. By rewriting:

E
[
log(p(o|z))

]
= E

[
log p(o|z = µ+ σ � ε)

]
(2)

where ε ∼ N (0, 1), reparameterizing makes the estimations
of the expectation with respect to q(z|o) differentiable.

To handle sequential data, Chung et al. combined the la-
tent variables with a recurrent model. The proposed Varia-
tional Recurrent Neural Network (VRNN) includes a VAE

at every time step t. The object function is a timestep-wise
variational lower bound:

T∑
t=1

[
−KL(q(zt|o≤t, z<t)||p(zt|o<t, z<t))+ log p(ot|z≤t,o<t)

]
(3)

Hierarchical Models in Sports Analytics

Many previous works (Gelman 2006; Davis, Perera, and
Swartz 2015) have built a multi-level hierarchical model
and estimated the parameters of the posterior with Bayesian
inference. The Bayesian inference naturally incorporates
the shrinkage effect into estimating model parameters. The
shrinkage effect pulls the estimates of low-level parame-
ters closer together than they would be if there were not a
higher-level distribution, and generally, shrinkage in hierar-
chical models encourages lower-level parameters to shift to-
ward the modes of the higher-level distribution, which can
significantly reduce the variance of estimation. Similar hi-
erarchical models have many applications in sports analyt-
ics, for example, Kruschke built a hierarchical model to es-
timate the batting abilities for individual baseball players.
They sampled the parameters of a likelihood function (mod-
eling players’ batting ability by the probabilities of hitting
the ball) from a prior conditioning on player position. Ac-
cordingly, for players in the same position, despite the differ-
ence in performance, shrinkage toward the position-specific
mode leaves the posterior distribution of their difference be-
ing nearly zero. Such a shrinkage effect can facilitate our
player embedding model. Given the observation that similar
players are likely to appear in similar contexts, our model
is trained to dynamically encourage the embedding to shift
toward the mode of a context-specific prior.

Contextualized Embedding

As a promising technique of incorporating background
knowledge into the object modeling, contextualized em-
bedding have been extensively studied under the topics re-
lated to Natural Language Processing, for example, a recent
work (Akbik, Blythe, and Vollgraf 2018) proposed a con-
textual string embedding. The embedding model contextu-
alizes words by their surrounding text. Correspondingly, the
same word will have different embeddings depending on its
contextual use. A more recent work (Peters et al. 2018) com-
puted the contextualized embedding to model complex char-
acteristics of word use (e.g., syntax and semantics) and ex-
tended the application of embeddings across linguistic con-
texts. They showed the embeddings can be easily added to
existing models and significantly improved the state-of-the-
art across six challenging NLP problems. To utilize the ad-
vantage of contextualized embedding, in this work, we com-
pute the embeddings for NHL players conditioning on dif-
ferent game contexts (including the current observation and
play history). Our results also demonstrate the benefit of ap-
plying contextualized embeddings in identifying pids and
predicting expected goals.



Type Name Range

Spatial
Features

X Coordinate of Puck [-100, 100]
Y Coordinate of Puck [-42.5, 42.5]

Velocity of Puck (−∞,+∞)
Angle between [−3.14, 3.14]the puck and the goal

Temporal
Features

Game Time Remain (−∞, 3,600]
Event Duration (0, +∞)

In-Game
Features

Score Differential (−∞,+∞)
Manpower Situation {EV, SH, PP}
Home or Away Team {Home, Away}

Action Outcome {successful, failure}
Pre-game Box Score (−∞,+∞)Statistics

Table 1: Complete Feature List. We have experimented with the op-
tion of incorporating players’ box scores into our embedding. The
box score includes players’ pre-games cumulative statistics: The
total number of goals, assists, points, penalty minutes, and played
games from the beginning of the 2017-18 NHL season to the be-
ginning of the current game.

Modeling Play Dynamics
Dataset
We utilize a dataset constructed by SPORTLOGiQ with
computer vision techniques. The data provide information
about game events and player actions for the entire 2018-
2019 NHL (largest professional ice hockey league) season,
which contains over 4 million events, covering 31 teams,
1,196 games and 1,003 players. The data track events around
the puck, and record the identity and actions of the player
in possession, with space and time stamps, as well as fea-
tures of the game context. The table utilizes adjusted spa-
tial coordinates where negative numbers refer to the defen-
sive zone of the acting player, positive numbers to his offen-
sive zone. Adjusted X-coordinates run from -100 to +100,
Y-coordinates from 42.5 to -42.5, where the origin is at the
ice center as in Figure 1. We augment the data with derived
features and list the complete feature set in Table 1.

Contextual Variables for NHL Players
In the SPORTLOGiQ dataset, the play dynamics is captured
by contextual variables as follows:
• The action at records the movements of players who con-

trol the puck. Our model applies a discrete action vector
with the one-hot representation.

• The environment variables xt describes the game envi-
ronment where the action is performed. We represent it as
a feature vector specifying a value of the features listed in
Table 1 at a discrete-time step t.
In each game, we consider event data of the form

x0, pl0,a0,x1, pl1,a1, . . . ,xt, plt,at, . . .: at time t, after
observing environment xt, player plt takes a turn (pos-
sesses the puck) and chooses an action at. The observa-
tions for a given player i form a set of triples (plt =
i, st,at), where to alleviate the partial observability in the
dataset, the game state st includes the game history st ≡

Figure 2: Graphical illustration of our hierarchical model. Thick
(bold) line indicates logical function while thin line denotes
stochastic dependence. The shaded nodes are given during gen-
eration. Our model applies hidden states ht−1 of a LSTM cell
to capture the temporal dependence of a series of previously ob-
served environment features and actions, so we represent the state
as st ≡ (xt,ht−1) and update the hidden states by ht =
f(xt,at, zt,ht−1). N is the number of embedded players.

(xt,at−1,xt−1, . . . ,x0) (Liu and Schulte 2018; Hausknecht
and Stone 2015). Each triple summarizes the observed
player actions and the game environment, with a joint dis-
tribution p(plt, st,at). This distribution can be factored into
two components:

p(plt, st,at) = p(plt|st,at)p(st,at). (4)
where the player-independent component p(st,at) repre-
sents the game context (observed action and state at t) and
p(plt|st,at) models the dependency between the observed
game context and the acting player plt. The second compo-
nent describes a player tendency to act under different game
states, which makes it an appropriate target for learning con-
textualized embedding for each player.

Contextualized Player Representation
We introduce our novel Variational Hierarchical Encoder
with Recurrence (VHER) which combines a generative
Bayesian hierarchical model with variational inference for
obtaining a contextualized player Representation.

Bayesian Hierarchical Model
To model the player-related component p(plt|st,at), we
build a Bayesian hierarchical model, shown in Figure 2,
where parameters are assigned distributions like random
variables (McCallum et al. 1998; Kruschke 2014). Our hier-
archical model splits p(plt|st,at) into different components:∑
θi,t

[
p(plt|θi,t)p(θi,t|zt, st,at)

]
p(zt|ωt,0)p(ωt,0|st,at)

Figure 2 presents a graphical illustration of our hierarchi-
cal model. Conditioning on game context (state-action pair
st,at), the prior on the player embeddings (the latent ran-
dom variables) is represented by a Gaussian distribution:

ω0,t := ψprior[ψc(st,at)] (5)
zt ∼ p(zt|st,at) ≡ N (ω0,t) (6)



where ω0,t ≡ [µt,0, diag(σt,0)] denotes the parameters
of the context-specific Gaussian prior. A neural network is
trained to compute the parameter estimates by implement-
ing a context function ψc that extracts context features and
a prior function ψprior to compute ω0,t from the extracted
features.

Given the sample latent variables zt and game context
(st.at), our model generates the label of the on-the-puck
(possessing the puck) player as follows:

θi,t := σ{ψdec[ψz(zt), ψ
c(st,at)]} (7)

plt|zt, st,at ∼ Categorical[φ(θ1,t, . . . ,θN,t)] (8)

where θi,t denotes the parameters of Bernoulli distributions
to model the presence of player pli,t. These parameters are
computed as follows: (1) A neural network implements the
player embedding function ψz to extract features from the
player representations zt (2) another neural network im-
plements the context embedding function ψc(st,at) to ex-
tract features from the game context. (3) The extracted fea-
tures are input to a decoder function ψdec, whose outputs
are mapped to [0,1] by a sigmoid function σ to compute
Bernoulli parameters for each player i. (4) The softmax
function φ normalizes the Bernoulli parameters to obtain a
categorical distribution over players acting at time t.

Variational Inference
We apply variational inference to derive an objective func-
tion for estimating the parameters of our hierarchical model.
The inference is similar to that of Variational Auto Encoder
(VAE) (Kingma and Welling 2013), because both models
utilize a prior and approximate posterior on the latent vari-
ables to define an approximate log-likelihood function for
the observed data. The main difference is that our hierarchi-
cal model conditions on the game context. In particular, the
latent variable prior is learned to be a function of the game
context, rather than a context-independent standard distribu-
tion.

Figure 3 illustrates the inference process of our model.
After observing the plt, the approximate posterior on a
player embedding follows the equation:

ωi,t := ψenc[ψpl(plt), ψ
c(st,at)] (9)

zt ∼ q(zt|plt = i, st,at) ≡ N (ωi,t) (10)

where we apply neural networks to implement (1) a obser-
vation function ψpl that extracts features from plt (repre-
sented as an one-hot vector of N dimensions) (2) a context
function ψc that extract features from game context (st,at),
and (3) an encoding function ψenc generates the parame-
ters ωi,t ≡ [µi,t, diag(σi,t)] of an approximate Gaussian
posterior, with which we sample embeddings of individual
players. The posterior q(zt|plt = i, st,at) is used as a repre-
sentation for player i, with which we can construct a context-
dependent embedding vector. This real-valued vector can re-
place the one-hot player representation and facilitate down-
stream application such as expected goal or game outcome
prediction.

Figure 3: Learning the player representations and applying them
to the validation model. The prior and the posterior respectively
represent the Gaussian Prior and the approximate posterior of latent
variables, with which the generator reconstructs plt. Red arrows
indicate the process of variational inference, and the shaded nodes
are given during training.

Based on the time-wise variational lower bound (Chung
et al. 2015), the loss function for player embedding model is

T∑
t=1

{
KL

[
q(zt|plt = i, st,at)||p(zt|st,at)

]
− (11)

Ezt|plt,st,at

[
log p(plt|zt, st,at)− λV LV (zt, st,at)

]}
where we add a validation loss LV with a parameter λV to
control its scale. This loss combines the gradient of the vali-
dation model into the embedding inference and dynamically
incorporates player embeddings into different applications.

Interpretation and Motivation
We provide two interpretations of the hierarchical VAE
model that in our view show why this is a good model
for representing the available statistical information about
a player.

Predictive Model Viewed as a predictive model, our
VHER solves the re-identification task (Lavi, Serj, and Ul-
lah 2018): identifying which player is currently acting given
a history of events. For example, a computer vision sys-
tem may try to identify a player’s jersey number from video
footage. As Equation (4) shows, this task captures the cor-
relations between the identity of a player, and what they do
in which match contexts. The prior distribution p(zt|st,at)
can be seen as representing the probability that a randomly
chosen player acts in a given game context. Our experiment
also studies the predictive of performance of VHER.

Shrinkage Effect A hierarchical model is commonly used
in statistics to capture similarities among a group of indi-
viduals (McCallum et al. 1998; Kruschke 2014). The in-
tuition motivating hierarchical models is that statistically



similar agents are assigned similar representations. Previ-
ous hierarchical models have been constructed for paramet-
ric models, which estimate a separate parameter vector for
each player (Murphy 2012). Parametric hierarchical mod-
els achieve a shrinkage effect where the differences between
different parameter vectors for each individual are shrunk
towards a common value. Shrinkage estimators have strong
statistical properties because they allow information to be
transferred between the observations of different individu-
als. In a Bayesian hierarchical model, shrinkage is achieved
by estimating the individual agent parameters using the pos-
terior distribution over parameters drawn from a common
prior for the group.

As Equation (11) shows, the VAE loss function induces
a shrinkage effect by regularizing the approximate poste-
rior for each individual player towards a common prior
p(zt|st,at). The Conditional VAE, in fact, achieves a joint
shrinkage effect where statistically similar agents are as-
signed similar representations in similar contexts. This is
because we can interpret the prior distribution p(zt|st,at)
as a joint representation of the player’s action and game con-
text: After training, state-action pairs that tend to feature the
same players will be associated with similar prior distribu-
tions. In sum, we have described a non-parametric hierar-
chical CVAE model that generates dynamic context-aware
player representations with a joint shrinkage effect for play-
ers, actions, and game states.

Empirical Evaluation
Experiment Setting
Training settings: We divide the dataset containing 1,196
games into a training set (80%), a validation set (10%) and a
testing set (10%). Our model is implemented in Tensorflow.
The total number of player (N ) is 1,003. The dimension of
the player embedding as well as the dimension of parameters
in Gaussian Prior and Posterior are set to 256.

Baseline models: Our first baseline model is a Determin-
istic Encoder (DE) model (Ganguly and Frank 2018). It
is trained as a regressor to identify the acting player and
implements a deterministic projection from the game con-
text to player embedding (a middle layer of the neural net-
work) without modeling the prediction uncertainty (or vari-
ance). The second baseline model is a Conditional Varia-
tional Auto-Encoder (CVAE) (Kingma and Welling 2013).
Compared to our VHER, CVAE conditions the player rep-
resentation on current game observation, which does not in-
corporate the play history into embedding computation. To
study the influence of player embedding, we also include an
LSTM as our third baseline model. LSTM directly finishes
the experimented tasks without including any player infor-
mation.

Identify the Acting Player
Similar to (Ganguly and Frank 2018), to learn the player rep-
resentation, our VHER is trained for a secondary task of pre-
dicting the acting (on-the-ball) player given the game con-
text (st,at), so this experiment studies the performance of

No Box Score With Box Score
Method ACC LL ACC LL

DE 10.91 % -19.482 14.85 % -18.590
CVAE 7.42 % -4.294 17.21 % -4.850
LSTM 12.41% -3.131 64.47% -1.718
VHER 48.00 % -2.228 82.13% -1.402

Table 2: Results for player identification. Acc=Accuracy and
LL=Log-Likelihood.

VHER as a predictive model and compares it with the other
three baseline models. To assess alternative ways of includ-
ing player information, we also experiment with the options
of including players’ pre-game cumulative box score (see
table 1) into game context.

Table 2 shows the experimental results. Predictions from
DE have a significantly lower log-likelihood than the other
three methods. It is because trained as a standard regression
model, the DE objective minimizes the distance between a
single prediction and the ground truth. This method, how-
ever, will fail if the output space is multi-modal. To handle
it, variational models compute multiple isotropic Gaussian
priors (Equation 6) on the latent variables which creating
a disentangled representations for each player, and thus fa-
cilitates the modeling of multiple modes. It explains why
CVAE manages to improve the log-likelihood. The perfor-
mance of CVAE is still limited by the lack of game infor-
mation. To study the influence of incorporating play history,
we directly apply a LSTM to identify the acting player and
achieve a better performance. Compared to the above base-
line models, our VHER utilizes the advantage of both CVAE
and LSTM: shrinkage toward a context-specific prior and in-
corporating play history. Therefore, VHER, achieves a sig-
nificant increase of prediction accuracy and log-likelihood
over other baseline methods. We also find including the box
score will further improve the performance. This is because
the box-scores provide a strong prior for identifying the act-
ing player.

Predict the Expected Goal
In this section, we validate the player embeddings in a prac-
tical task of predicting the Expected Goal (EG). Expected
Goal (EG) weights each shot by the chance of it leading to
a goal. To see if the embeddings will improve the prediction
accuracy of EG, we generate the player embedding zt for
the on-the-ball player plt. As Figure 3 shows, at time t, we
input st, shott, zt to a validation model, which, similar to a
classifier, is trained to generate 1 if a goal is scored after the
player plt makes the shot and 0 otherwise.

We refer to a neural net for the validation task as the vali-
dation model. Our validation model is an LSTM that is given
the play history, combined with three comparison methods
of including current-player information: 1) our dense VHER
embeddings, 2) directly inputting one-hot player ids (Pids),
3) no player information. To train the validation model, we
utilized the game context for action shot recorded in our
NHL dataset and supervise the training by whether the shot
will lead to a goal in real games. However, considering that



most of the shots will not score any goals, the training data is
highly imbalanced. We handle the imbalance with a resam-
pling method (Good 2006) so that equal numbers of success
and failed shots are included in the training dataset.

Model Metric
Player Info P R F1 LL

N/A 0.144 0.808 0.245 -0.641
Pids 0.103 0.691 0.179 -0.573
DE 0.206 0.903 0.335 -2.756

CVAE 0.252 0.939 0.397 -2.589
VHER 0.624 0.846 0.718 -0.281

Table 3: Results for predicting the Expected Goal. The evalua-
tion metrics include Precision (P), Recall (R), F1-score and Log-
Likelihood (LL).

Table 3 shows the results on the testing set. Without in-
cluding any player information, predictions from a LSTM
model have large recall but very limited precision. Thus the
model prefers labeling many shots as goals, but most of the
predictions are incorrect. This problem has not been allevi-
ated after adding the pids to the input space, which shows
it is hard to utilize the player information with only a sparse
one-hot label. Providing more useful player information, DE
deterministically maps the player information into a dense
player embedding vector and CVAE further improves the
embedding with the latent variables. A common problem for
the above embedding methods is the absence of play history
during training. To overcome this limitation, our VHER ap-
plies a recurrent model to fit the play history and substan-
tially improves the precision of predictions.

Discussion
In this section, we discuss the potential applications of varia-
tional player embeddings and the possibility of generalizing
them to other sports.

Applications of Variational Player Embeddings
Variational player embeddings can potentially be applied for
many tasks: the embedding prior for predicting a player ID,
and the posterior for utilizing available player IDs to predict
other quantities. Such prediction tasks include not only ex-
pected goal prediction, as examined in this paper, but also
fundamental challenges such as player evaluation or game
outcome prediction (Ganguly and Frank 2018). The task val-
idation loss (Equation (11)) allows embeddings to be opti-
mized for a specific task. During testing, the model gener-
ates a contextualized player embedding for the task model
at each step, which maximize the statistical power of know-
ing which player is acting.

Generalize to Other Sports
Although we mainly focus on the ice hockey games, the con-
textualized player embedding model can be generalized to
many other sports with a complex game context and a con-
tinuous flow of players’ movements under a possession (e.g.
basketball, soccer). These sports satisfy our assumption that

the game context and a continuous play history have signifi-
cant impact on the player performance. This means that the
data can be represented as sequences of context features; our
training method can be used to learn player embeddings for
any data in this format. Specifically, VHER extracts from the
game context a context-specific prior, and fits the play his-
tory with an LSTM, which allow learning a more predictive
player embedding compared to previous methods.

Conclusion
Capturing what players have in common and how they dif-
fer is one of the main concerns of sports analytics. We pro-
posed a deep representation learning approach, where each
player is assigned a contextualized continuous-valued em-
bedding vector, such that statistically similar players are
mapped to similar embeddings in similar match contexts.
To learn the player embeddings, we introduce a novel vari-
ational hierarchical auto-encoder, with recurrence. Recur-
rence allows us to model the dependence of player actions
on the recent match context. The VHER learns a context-
specific prior over player representations. The embedding
for each player is derived from his posterior representation,
given the player ID. Since the posterior representations share
a common prior, the VHER induces a double shrinkage ef-
fect: similar players are mapped to similar representations in
similar match contexts. The VHER is trained on the player-
identification task of predicting which player is acting in a
given match context. Empirical evaluation shows that the
hierarchical player representations are effective for player
identification, and also for the validation task of predicting
whether a given player’s shot will lead to a goal.
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